사이버 공간에서 첨예화, 복잡화되고 있는 공격을 일대일 방식으로 방어하는데 한계가 있으므로 보다 효과적인 방어 방법이 필요하다. 본 고에서는 내외부의 공격에 대해 자산을 체계적 적응적으로 방어할 수 있는 다중계층 보안체제 구축 방안을 제시한다. 방어지역(Defense Zone)을 중심으로 한 다중계층 보안체제의 구조를 고안하고, 사이버 위협분석과 방어기술 자동할당 등 구현에 필요한 기술요소들에 대해 논의한다. 또한, 다중계층 보안체제에 대한 효과와 적용성을 보인다. 향후, 제시된 방안의 구체화를 위해 방어지역에 대한 상세구조설계, 최적 방어기술 자동선택방법, 위협 탐지를 위한 정상상태 모델링 기술 등에 대한 연구가 필요하다.
전자 상거래와 같이 통신 보안이 요구되는 응용 분야에 에이전트 기술을 효과적으로 적용하려면 에이전트 기술과 보안 기술의 결합이 요구된다. 본 논문은 공개키 기반 구조 기술과 에이전트 기술을 결합하여, 기밀성(privacy), 완전성(integrity), 신원 확인(authentication), 부인 방지(non-repudiation)등의 보안 기능을 지원하는 다중 보안 에이전트 엔진 모델을 제안한다. 각 에이전트는 구조적으로 에이전트 엔진 계층과 에이전트 응용 계층으로 구성된다. 제안한 보안 에이전트 모델의 설계에는 자가 송수신 메시지, 보안 채널 그리고 에이전트 응용 계층에서의 KQML(Knowledge Query and Manipulation Language) 메시지와 에이전트 엔진 계층에서의 메시지의 구분이라는 개념들이 사용되었다. 제시된 보안 에이전트 엔진 모델이 제공하는 에이전트 언어는 기존 에이전트 언어인 KQML의 내용층 및 메시지층에 대한 아무런 수정이나 제약 조건 없이 통신 계층만을 확장하여 보안 기능을 표현하며, 에이전트간의 보안 통신은 에이전트 언어 상에서 투명하게 표현되는 보안 채널을 통해 이루어진다는 특징을 갖는다.
본 논문에서는 기존 전력 분석 공격의 어려움과 비효율성을 극복하기 위해 딥 러닝 기반의 MLP(Multi-Layer Perceptron) 알고리즘을 기반으로 한 공격 모델을 사용하여 암호 디바이스의 비밀 키를 찾는 공격을 시도하였다. 제안하는 전력 분석 공격 대상은 XMEGA128 8비트 프로세서 상에서 구현된 AES-128 암호 모듈이며, 16바이트의 비밀 키 중 한 바이트씩 복구하는 방식으로 구현하였다. 실험 결과, MLP 기반의 전력 분석 공격은 89.51%의 정확도로 비밀 키를 추출하였으며 전처리 기법을 수행한 경우에는 94.51%의 정확도를 나타내었다. 제안하는 MLP 기반의 전력 분석 공격은 학습을 통한 feature를 추출할 수 있는 성질이 있어 SVM(Support Vector Machine)과 같은 머신 러닝 기반 모델보다 우수한 공격 특성을 보임을 확인하였다.
전자 상거래와 같이 통신 보안이 요구되는 응용 분야에 에이전트 기술을 효과적으로 적용하려면 에이전트 기술과 보안 기술의 결합이 요구된다. 본 논문은 공개키 기반 구조 기술과 에이전트 기술을 결합하여, 기밀성(privacy), 완전성(integrity), 신원 확인(authentication), 부인 방지(non-repudiation)등의 보안 기능을 지원하는 다중 보안 에이전트 엔진 모델을 제안한다. 각 에이전트는 구조적으로 에이전트 엔진 계층과 에이전트 응용 계층으로 구성된다. 제안한 보안 에이전트 모델의 설계에는 자가 송수신 메시지, 보안 채널 그리고 에이전트 응용 계층에서의 KQML(Knowledge Query and Manipulation Language) 메시지와 에이전트 엔진 계층에서의 메시지의 구분이라는 개념들이 사용되었다. 제시된 보안 에이전트 엔진 모델이 제공하는 에이전트 언어는 기존 에이전트 언어인 KQML의 내용층 및 메시지층에 대한 아무런 수정이나 제약 조건 없이 통신 계층만을 확장하여 보안 기능을 표현하며, 에이전트간의 보안 통신은 에이전트 언어 상에서 투명하게 표현되는 보안 채널을 통해 이루어진다는 특징을 갖는다.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.150-156
/
2024
With the advent of personalized search engines, a myriad of approaches came into practice. With social media emergence the personalization was extended to different level. The main reason for this preference of personalized engine over traditional search was need of accurate and precise results. Due to paucity of time and patience users didn't want to surf several pages to find the result that suits them most. Personalized search engines could solve this problem effectively by understanding user through profiles and histories and thus diminishing uncertainty and ambiguity. But since several layers of personalization were added to basic search, the response time and resource requirement (for profile storage) increased manifold. So it's time to focus on optimizing the layered architectures of personalization. The paper presents a layout of the multi agent based personalized search engine that works on histories and profiles. Further to store the huge amount of data, distributed database is used at its core, so high availability, scaling, and geographic distribution are built in and easy to use. Initially results are retrieved using traditional search engine, after applying layer of personalization the results are provided to user. MongoDB is used to store profiles in flexible form thus improving the performance of the engine. Further Weighted Sum model is used to rank the pages in personalization layer.
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.23-28
/
2024
The multi-tenancy and high scalability of the cloud have inspired businesses and organizations across various sectors to adopt and deploy cloud computing. Cloud computing provides cost-effective, reliable, and convenient access to pooled resources, including storage, servers, and networking. Cloud service models, SaaS, PaaS, and IaaS, enable organizations, developers, and end users to access resources, develop and deploy applications, and provide access to pooled computing infrastructure. Despite the benefits, cloud service models are vulnerable to multiple security and privacy attacks and threats. The SaaS layer is on top of the PaaS, and the IaaS is the bottom layer of the model. The software is hosted by a platform offered as a service through an infrastructure provided by a cloud computing provider. The Hypertext Transfer Protocol (HTTP) delivers cloud-based apps through a web browser. The stateless nature of HTTP facilitates session hijacking and related attacks. The Open Web Applications Security Project identifies web apps' most critical security risks as SQL injections, cross-site scripting, sensitive data leakage, lack of functional access control, and broken authentication. The systematic literature review reveals that data security, application-level security, and authentication are the primary security threats in the SaaS model. The recommended solutions to enhance security in SaaS include Elliptic-curve cryptography and Identity-based encryption. Integration and security challenges in PaaS and IaaS can be effectively addressed using well-defined APIs, implementing Service Level Agreements (SLAs), and standard syntax for cloud provisioning.
본 논문에서는 무선 센서네트워크에서 센서노드의 효율적 인증을 제공하기 위한 다중계층 클러스터 기반의 분산형 인증모델(DAMMC: Distributed Authentication Model using Multi-level Cluster)을 제안한다. 제안된 인증모델은 하나의 클러스터헤드가 CA 기능을 갖되 사용자가 정의한 m개의 다중계층을 두고 상위 클러스터가 하위클러스터를 인증하는 구조로서, 클러스터들끼리의 상호 인증 오버헤드를 해결할 수 있는 기법이다. 특히 노드 인증서 발급의 경우, 임계값 t개 이상의 클러스터 멤버노드가 분할인증서를 제공하는 경우에만 인증서가 생성되도록 비밀분산기법을 사용하여 센서노드의 효과적인 신뢰관계를 구축하였다. 제안된 DAMMC는 시뮬레이션을 통해 초기인증과정에서의 인증발급 연산시간, 노드 추가에 따른 인증발급 연산시간등이 기존 인증프로토콜에 비해 우수함을 확인하였으며, 보안성능도 변형공격, 속임 경로 공격 및 비인가된 노드 추가, 재사용 공격 등의 공격기법으로부터 안전함을 확인하였다.
최근 딥러닝 기반 비프로파일링 부채널 분석이 제안됐다. 딥러닝 기반 비프로파일링 분석은 신경망 모델을 모든 추측키에 대해 학습시킨 뒤, 학습된 정도의 차이를 통해 올바른 비밀키를 찾아내는 기법이다. 이때, 신경망 학습모델 설계에 따라 비프로파일링 분석성능이 크게 달라지기 때문에 올바른 모델 설계의 기준이 필요하다. 본 논문은 학습모델 설계에 사용 가능한 2가지 loss 함수와 8가지 label 기법을 설명하고, 비프로파일링 분석과 소비전력모델 관점에서 각 label 기법의 분석성능을 예측했다. 해밍웨이트 소비전력모델을 가정했을 때의 비프로파일링 분석 특징을 고려해서 One-hot 인코딩을 적용하지 않은 HW(Hamming Weight) label과 CO(Correlation Optimization) loss를 적용한 학습모델이 가장 좋은 분석성능을 가질 것으로 예측했다. 그리고 AES-128 1라운드 Subbytes 연산 부분 데이터 집합 3가지에 대해 실제 분석을 수행했다. 제시한 각 label 기법과 loss 함수를 적용한 총 16가지 MLP(Multi-Layer Perceptron)기반 학습모델로 두 데이터 집합을 비프로파일링 분석하여 예측에 대해 검증했다.
The exponential proliferation of cutting-edge computing technologies has spurred organizations to outsource their data and computational needs. In the realm of cloud-based computing environments, ensuring robust security, encompassing principles such as confidentiality, availability, and integrity, stands as an overarching imperative. Elevating security measures beyond conventional strategies hinges on a profound comprehension of malware's multifaceted behavioral landscape. This paper presents an innovative paradigm aimed at empowering cloud service providers to adeptly model user behaviors. Our approach harnesses the power of a Particle Swarm Optimization-based Probabilistic Neural Network (PSO-PNN) for detection and recognition processes. Within the initial recognition module, user behaviors are translated into a comprehensible format, and the identification of malicious nano-structures behaviors is orchestrated through a multi-layer neural network. Leveraging the UNSW-NB15 dataset, we meticulously validate our approach, effectively characterizing diverse manifestations of malicious nano-structures behaviors exhibited by users. The experimental results unequivocally underscore the promise of our method in fortifying security monitoring and the discernment of malicious nano-structures behaviors.
본 논문은 퍼스널 모빌리티(Personal Mobility, PM)를 이용하는 청각 장애인에게 소리가 발생하는 도래각(Direction of Arrival, DOA)을 시각화하는 지능형 제어 시스템을 제시하며 도로에서 발생하는 경보음, 크락션 등 소리로 인한 위험한 상황들을 인지하고 예방하고자 한다. 소리 위치 추정 방법은 GCC-PHAT(Generalized Cross-Correlation Phase Transform) 기반 도착 지연 시간(Time Difference of Arrival, TDOA)을 특징으로 갖는 머신러닝 분류 모델을 사용한다. 도로 상황을 재현한 실험 환경에서 각각 풍속 0, 5.8, 14.2, 26.4km/h의 조건에 따라 학습 데이터를 추출한 후 학습한 4가지 분류 모델들을 Grid search cross validation으로 비교하며 성능이 가장 우수한 MLP(Multi-Layer Perceptron) 모델을 알고리즘으로 적용하였다. 최종적으로 바람이 발생하였을 때 제안된 알고리즘이 평균 90.7%의 정확도를 나타내었으며, 이는 기존의 일반적인 소리 위치 추정기법보다 평균 7.6-11.5% 정도의 성능 향상을 보이는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.