• 제목/요약/키워드: Multi-Layer Perceptron(MLP)

검색결과 233건 처리시간 0.027초

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

신경망을 적용한 침입탐지시스템의 설계 (Design of Intrusion Detection System Using Neural Networks)

  • 이종혁;한영주;정태명
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.1067-1070
    • /
    • 2004
  • 우리는 갈수록 지능화, 분산화, 자동화 되어 가고 있는 침입에 대해 효과적으로 대처하기 위해 신경망을 적용한 침입탐지 시스템을 설계 하였다. 본 논문은 신경망을 학습시키기 위해 학습 견본과 신경망 적용 인자를 정의 하였으며 학습 기법으론 MLP(Multi Layer Perceptron)을 이용 하였다. 새롭게 설계된 침입탐지 시스템의 탐지 모듈은 기존의 패턴 매치 방식의 모듈과 신경망 모듈이 적용되어 보다 정확한 침입 탐지가 가능하다.

  • PDF

Classification of ultrasonic signals of thermally aged cast austenitic stainless steel (CASS) using machine learning (ML) models

  • Kim, Jin-Gyum;Jang, Changheui;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1167-1174
    • /
    • 2022
  • Cast austenitic stainless steels (CASSs) are widely used as structural materials in the nuclear industry. The main drawback of CASSs is the reduction in fracture toughness due to long-term exposure to operating environment. Even though ultrasonic non-destructive testing has been conducted in major nuclear components and pipes, the detection of cracks is difficult due to the scattering and attenuation of ultrasonic waves by the coarse grains and the inhomogeneity of CASS materials. In this study, the ultrasonic signals measured in thermally aged CASS were discriminated for the first time with the simple ultrasonic technique (UT) and machine learning (ML) models. Several different ML models, specifically the K-nearest neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models, were used to classify the ultrasonic signals as thermal aging condition of CASS specimens. We identified that the ML models can predict the category of ultrasonic signals effectively according to the aging condition.

Nondestructive crack detection in metal structures using impedance responses and artificial neural networks

  • Ho, Duc-Duy;Luu, Tran-Huu-Tin;Pham, Minh-Nhan
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.221-235
    • /
    • 2022
  • Among nondestructive damage detection methods, impedance-based methods have been recognized as an effective technique for damage identification in many kinds of structures. This paper proposes a method to detect cracks in metal structures by combining electro-mechanical impedance (EMI) responses and artificial neural networks (ANN). Firstly, the theories of EMI responses and impedance-based damage detection methods are described. Secondly, the reliability of numerical simulations for impedance responses is demonstrated by comparing to pre-published results for an aluminum beam. Thirdly, the proposed method is used to detect cracks in the beam. The RMSD (root mean square deviation) index is used to alarm the occurrence of the cracks, and the multi-layer perceptron (MLP) ANN is employed to identify the location and size of the cracks. The selection of the effective frequency range is also investigated. The analysis results reveal that the proposed method accurately detects the cracks' occurrence, location, and size in metal structures.

CCTV와 딥러닝을 이용한 응급 상황 인식 시스템 (Emergency Situation Recognition System Using CCTV and Deep Learning)

  • 박세준;정범진;이정준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.807-809
    • /
    • 2020
  • 기존의 CCTV 관리 체계는 사건·사고에 대한 신속한 조치가 불가능하고 정황 파악이나 증거자료 확보 등 사후조치의 성격이 강하다. 본 논문에서는 Mask R-CNN(Regions with CNN)을 이용하여 CCTV가 읽어 들이는 객체가 응급상황인지 판단하는 방법을 제시한다. 사람으로 인식되는 영역을 다층 퍼셉트론(MLP, Multi-Layer Perceptron)으로 학습시켜 해당 대상이 처한 상황을 인지하고 응급상황으로 인식되는 상황이 지속될 경우 관리 모니터를 통해 사용자에게 알림을 준다. 본 연구를 통해 실시간 상호작용적인 CCTV 관리 체계를 구축하여 도움이 필요한 사람의 골든타임을 놓치지 않게 될 것으로 기대한다.

고유특징과 다층 신경망을 이용한 얼굴 영상에서의 눈과 입 영역 자동 추출 (Automatic Extraction of Eye and Mouth Fields from Face Images using MultiLayer Perceptrons and Eigenfeatures)

  • 류연식;오세영
    • 전자공학회논문지CI
    • /
    • 제37권2호
    • /
    • pp.31-43
    • /
    • 2000
  • 본 논문은 얼굴영상에서 눈과 입 부위를 추출하기 위한 알고리즘을 제안하였다. 첫째로, 눈과 입의 에지 이진 화소 집합의 고유 값 (Eigenvalue) 과 고유 벡터 (Eigenvector) 로 부터 추출한 정보들은 눈과 입을 찾기 위한 좋은 특징이 된다. 눈과 입 부위의 긍정적 샘플과 부정적 샘플로부터 추출한 고유 특징들로 다층 신경망을 학습하여 특정 영역이 눈과 입 부위 포함하는 정도를 나타내도록 하였다. 둘째로, 시스템의 강건성 확보를 위해 서로 다른 구조의 단일 MLP를 묶어서 그 결과를 이용하는 Ensemble network 구조를 사용하였다. 두 눈과 입에 각각 별도의 Ensemble network을 사용하였고, 각 Ensemble network내 MLP들의 출력이 최대가 되는 영역의 중심 좌표들을 평균하여 최종 위치를 결정하였다. 셋째로, 특징 정보 추출 검색 영역을 즐기기 위해 얼굴 영상 에지 정보와 눈과 입의 위치 관계를 이용해 눈과 입의 대략적인 영역을 추출하였다. 제안된 시스템은 적은 수의 정면 얼굴에서 추출한 고유 특징들로 학습된 Ensemble network을 사용하여 학습에 사용되지 않은 다른 사람들의 정면얼굴 뿐만 아니라 일정한 범위 내 자세 변화에서도 좋은 일반화 성능을 얻고 있으며, 작은 범위 내에서의 얼굴 크기 변화나 좌우 20°이내의 자세 변화에 대해서도 신경망의 일반화 기능을 이용하여 강건한 결과를 얻고 있음을 확인하였다.

  • PDF

혈소판 라만 스펙트럼에서 특이값 분해에 의한 기저 합성을 통한 알츠하이머병 검출 (A screening of Alzheimer's disease using basis synthesis by singular value decomposition from Raman spectra of platelet)

  • 박아론;백성준
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2393-2399
    • /
    • 2013
  • 본 논문에서는 특이값 분해(SVD: singular value decomposition)에 의한 기저 스펙트럼의 합성을 통해 혈소판 라만 스펙트럼에서 알츠하이머병(AD: Alzheimer's disease)을 검출하는 방법을 제안하였다. AD가 유도된 형질 전환 실험용 쥐의 혈소판에서 측정한 라만 스펙트럼은 가산 잡음과 배경 잡음의 제거와 정규화로 구성된 전처리 과정을 수행한다. 각 데이터 행렬의 열벡터는 AD와 정상(NR: normal)의 라만 스펙트럼으로 구성한다. 이 데이터 행렬을 SVD로 분해한 다음 각 행렬의 열벡터 12개를 AD와 NR의 기저 스펙트럼으로 결정한다. 분류 과정은 각 클래스의 기저 스펙트럼을 선형 합성한 스펙트럼과 분류 스펙트럼의 평균제곱근오차(root mean square error)가 최소인 클래스를 선택하는 것으로 완료된다. 278개의 혈소판 라만 스펙트럼을 사용한 실험에 따르면 제안한 방법의 평균 분류율은 약 97.6%로 주성분 분석(principle components analysis)으로 추출한 특징에 MLP(multi-layer perceptron)를 이용한 경우보다 약 6.1% 정도의 우수한 성능을 보였다. 이 결과에서 SVD에 의한 기저 스펙트럼이 혈소판 라만 스펙트럼에서 AD의 검출에 적합하게 사용될 수 있음을 확인하였다.

LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구 (A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet)

  • 박대경;류경준;신동일;신동규;박정찬;김진국
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.91-98
    • /
    • 2021
  • 오늘날 정보통신 기술이 급격하게 발달하면서 IT 인프라에서 보안의 중요성이 높아졌고 동시에 지능형 지속 공격(Advanced Persistent Threat)처럼 고도화되고 다양한 형태의 사이버 공격이 증가하고 있다. 점점 더 고도화되는 사이버 공격을 조기에 방어하거나 예측하는 것은 매우 중요한 사안으로, NIDS(Network-based Intrusion Detection System) 관련 데이터 분석만으로는 빠르게 변형하는 사이버 공격을 방어하지 못하는 경우가 많이 보고되고 있다. 따라서 현재는 HIDS(Host-based Intrusion Detection System) 데이터 분석을 통해서 위와 같은 사이버 공격을 방어하는데 침입 탐지 시스템에서 생성된 데이터를 이용하고 있다. 본 논문에서는 기존에 사용되었던 데이터 세트에서 결여된 스레드 정보, 메타 데이터 및 버퍼 데이터를 포함한 LID-DS(Leipzig Intrusion Detection-Data Set) 호스트 기반 침입 탐지 데이터를 이용하여 기계학습 알고리즘에 관한 비교 연구를 진행했다. 사용한 알고리즘은 Decision Tree, Naive Bayes, MLP(Multi-Layer Perceptron), Logistic Regression, LSTM(Long Short-Term Memory model), RNN(Recurrent Neural Network)을 사용했다. 평가를 위해 Accuracy, Precision, Recall, F1-Score 지표와 오류율을 측정했다. 그 결과 LSTM 알고리즘의 정확성이 가장 높았다.

효과적인 딥러닝 기반 비프로파일링 부채널 분석 모델 설계방안 (Design of an Effective Deep Learning-Based Non-Profiling Side-Channel Analysis Model)

  • 한재승;심보연;임한섭;김주환;한동국
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1291-1300
    • /
    • 2020
  • 최근 딥러닝 기반 비프로파일링 부채널 분석이 제안됐다. 딥러닝 기반 비프로파일링 분석은 신경망 모델을 모든 추측키에 대해 학습시킨 뒤, 학습된 정도의 차이를 통해 올바른 비밀키를 찾아내는 기법이다. 이때, 신경망 학습모델 설계에 따라 비프로파일링 분석성능이 크게 달라지기 때문에 올바른 모델 설계의 기준이 필요하다. 본 논문은 학습모델 설계에 사용 가능한 2가지 loss 함수와 8가지 label 기법을 설명하고, 비프로파일링 분석과 소비전력모델 관점에서 각 label 기법의 분석성능을 예측했다. 해밍웨이트 소비전력모델을 가정했을 때의 비프로파일링 분석 특징을 고려해서 One-hot 인코딩을 적용하지 않은 HW(Hamming Weight) label과 CO(Correlation Optimization) loss를 적용한 학습모델이 가장 좋은 분석성능을 가질 것으로 예측했다. 그리고 AES-128 1라운드 Subbytes 연산 부분 데이터 집합 3가지에 대해 실제 분석을 수행했다. 제시한 각 label 기법과 loss 함수를 적용한 총 16가지 MLP(Multi-Layer Perceptron)기반 학습모델로 두 데이터 집합을 비프로파일링 분석하여 예측에 대해 검증했다.

딥러닝 및 기계학습 활용 반려견 얼굴 정면판별 방법 (Recognition of dog's front face using deep learning and machine learning)

  • 김종복;장동화;양가영;권경석;김중곤;이준환
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.1-9
    • /
    • 2020
  • 반려견을 키우는 가구 수가 급격하게 증가함에 따라 유기, 유실견도 많이 증가하고 있다. 국내에서는 2014년부터 반려동물 등록제를 시행하고 있지만, 안전성과 실효성 문제로 등록률이 높지 않은 실정이다. 이러한 문제를 해결할 방법으로 반려견 생체인식 기술이 주목을 받고 있다. 생체인식률을 높이기 위해서는 최대한 정면에서 같은 형태로 생체정보 이미지를 수집해야 한다. 하지만 반려견은 사람과 달리 비협조적이기 때문에 생체정보 이미지 수집이 어렵다. 본 논문에서는 반려견 생체인식에 적합한 생체정보 이미지 수집을 위해 실시간 영상에서 반려견 얼굴 방향이 정면인지를 판별하는 방법을 제안한다. 제안 방법은 딥러닝을 활용하여 반려견 눈과 코를 검출하고, 검출된 눈과 코의 상대적 크기와 위치를 통해 5가지의 얼굴 방향 정보를 추출하여 기계학습 분류기로 정면 여부를 판별한다. 2,000개의 반려견 이미지를 분류하여 학습, 검증 및 테스트에 사용하였다. 눈과 코 검출에는 YOLOv3와 YOLOv4를 사용하였고, 분류기는 MLP(Multi-layer Perceptron), RF(Random Forest), SVM(Support Vector Machine)을 사용하였다. YOLOv4와 RF 분류기를 사용하고 제안하는 5가지 얼굴 방향 정보 모두를 적용하였을 때 얼굴 정면 판별 성능이 95.25%로 가장 좋았으며, 실시간 처리도 가능한 것으로 나타났다.