• 제목/요약/키워드: Multi-Label Classification

검색결과 62건 처리시간 0.023초

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

기계학습 기반 다중 레이블 분류를 이용한 실시간 전략 게임에서의 상대 행동 예측 (Opponent Move Prediction of a Real-time Strategy Game Using a Multi-label Classification Based on Machine Learning)

  • 신승수;조동희;김용혁
    • 한국융합학회논문지
    • /
    • 제11권10호
    • /
    • pp.45-51
    • /
    • 2020
  • 최근 많은 게임이 사용자의 게임 플레이와 관련된 데이터를 제공하고 있고, 이에 기계학습 기법을 결합하여 상대의 행동을 예측하는 연구들이 있다. 본 연구는 실시간 전략 게임(클래시로얄)의 경기 데이터와 기계학습 기반의 다중 레이블 분류를 사용하여 상대 플레이어의 행동을 예측한다. 초기 실험은 이진 형태의 카드 특성과 카드 배치 좌표 그리고 정규화된 시간 정보를 입력받아 카드 타입, 카드 배치 좌표를 랜덤포레스트와 다층 퍼셉트론을 이용하여 예측한다. 이후, 순차적으로 3 가지 전처리 방식을 사용하여 실험을 진행했다. 먼저 입력 데이터의 특성 정보 일부를 변환시켜 예측했다. 다음으로 입력 데이터를 연속된 카드 입력 방식까지 고려한 중첩 형태로 변환 시켜 예측했다. 마지막으로 모든 이전 단계의 데이터들을 정규화된 시간 기준에 따라 초반, 후반으로 분할하여 예측했다. 그 결과 가장 개선을 보인 전처리 방식은 중첩 형태의 데이터를 초반으로 분할하였을 경우로 카드 타입이 약 2.6%, 카드 배치 좌표가 약 1.8% 개선을 보였다.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

긴꼬리 분포의 광간섭 단층촬영 데이터세트에 대한 다중 레이블 이미지 분류 (Multi-Label Image Classification on Long-tailed Optical Coherence Tomography Dataset)

  • ;정경희;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.541-543
    • /
    • 2022
  • In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.

단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구 (A study on end-to-end speaker diarization system using single-label classification)

  • 정재희;김우일
    • 한국음향학회지
    • /
    • 제42권6호
    • /
    • pp.536-543
    • /
    • 2023
  • 다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.

CNN을 이용한 발화 주제 다중 분류 (Multi-labeled Domain Detection Using CNN)

  • 최경호;김경덕;김용희;강인호
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.56-59
    • /
    • 2017
  • CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.

  • PDF

머신러닝 기반의 기업 리뷰 다중 분류: 부분 문법 적용을 중심으로 (Multi-Label Classification for Corporate Review Text: A Local Grammar Approach)

  • 백혜연;장영균
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.27-41
    • /
    • 2023
  • 최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 '품질'을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 '부분 문법' 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.

국가별 행정체계 특성을 반영한 인공지능 활용 해외 주소데이터 품질검증 기법 (Overseas Address Data Quality Verification Technique using Artificial Intelligence Reflecting the Characteristics of Administrative System)

  • 김진실;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.1-9
    • /
    • 2022
  • 글로벌 시대에 들어서면서 수입식품 안전관리에 대한 중요성이 증가하고 있다. 해외 식품업체 주소정보는 수입식품 안전관리를 위한 핵심 정보로써 식품위해 발생시 신속한 대처와 사후관리를 위해 반드시 검증되어야 한다. 그러나 각국의 주소체계가 다른 관계로 하나의 검증시스템이 모든 국가의 주소를 검증할 수는 없다. 또한, 주소검증은 사용하는 분야에 따라 검정목적이 상이할 수 있다. 본 논문에서는 주어진 해외 식품업체 주소로부터 해당 국가의 행정구역 레벨로 분류하는 문제를 다룬다. 수입식품 안전관리를 정확하고 효율적으로 하기 위하여 수입식품제조업체 주소를 해당 국가의 행정구역 수준으로 정확하게 매칭하는 것이 필요하다. 수입식품이 생산·제조되는 위치와 식품제조에 영향을 줄 수 있는 환경정보, 재난재해 정보를 결합함으로써 선제적 수입식품 안전관리가 가능하다. 그러나, 일부 국가에서는 주소를 표기할 때 행정구역 레벨명을 생략하여 작성하고 있으며, 동일한 지명이 여러 행정구역 레벨에서 중복되는 경우가 있어 주소로부터 행정구역 레벨을 정확히 분류하는 일은 쉽지 않다. 본 연구에서는 이러한 경우에 적합한 딥러닝 기반 행정구역 레벨 분류 모델을 제안하고, 실제 해외 식품회사 주소 데이터에 대하여 검증한다. 구체적으로 다중 레이블 분류 모델에서 멱집합(Label Powerset)을 이용해 훈련하는 방식을 사용한다. 제안된 기법의 검증을 위해 식약처에 등록된 에콰도르 및 베트남에 있는 해외 제조업소 주소에 대하여 정확도를 검증하였으며, 기존의 분류 모델보다 정확도가 각각 28.1% 및 13% 정도 향상되었다.

Approach to diagnosing multiple abnormal events with single-event training data

  • Ji Hyeon Shin;Seung Gyu Cho;Seo Ryong Koo;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.558-567
    • /
    • 2024
  • Diagnostic support systems are being researched to assist operators in identifying and responding to abnormal events in a nuclear power plant. Most studies to date have considered single abnormal events only, for which it is relatively straightforward to obtain data to train the deep learning model of the diagnostic support system. However, cases in which multiple abnormal events occur must also be considered, for which obtaining training data becomes difficult due to the large number of combinations of possible abnormal events. This study proposes an approach to maintain diagnostic performance for multiple abnormal events by training a deep learning model with data on single abnormal events only. The proposed approach is applied to an existing algorithm that can perform feature selection and multi-label classification. We choose an extremely randomized trees classifier to select dedicated monitoring parameters for target abnormal events. In diagnosing each event occurrence independently, two-channel convolutional neural networks are employed as sub-models. The algorithm was tested in a case study with various scenarios, including single and multiple abnormal events. Results demonstrated that the proposed approach maintained diagnostic performance for 15 single abnormal events and significantly improved performance for 105 multiple abnormal events compared to the base model.

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.