This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.
최근 많은 게임이 사용자의 게임 플레이와 관련된 데이터를 제공하고 있고, 이에 기계학습 기법을 결합하여 상대의 행동을 예측하는 연구들이 있다. 본 연구는 실시간 전략 게임(클래시로얄)의 경기 데이터와 기계학습 기반의 다중 레이블 분류를 사용하여 상대 플레이어의 행동을 예측한다. 초기 실험은 이진 형태의 카드 특성과 카드 배치 좌표 그리고 정규화된 시간 정보를 입력받아 카드 타입, 카드 배치 좌표를 랜덤포레스트와 다층 퍼셉트론을 이용하여 예측한다. 이후, 순차적으로 3 가지 전처리 방식을 사용하여 실험을 진행했다. 먼저 입력 데이터의 특성 정보 일부를 변환시켜 예측했다. 다음으로 입력 데이터를 연속된 카드 입력 방식까지 고려한 중첩 형태로 변환 시켜 예측했다. 마지막으로 모든 이전 단계의 데이터들을 정규화된 시간 기준에 따라 초반, 후반으로 분할하여 예측했다. 그 결과 가장 개선을 보인 전처리 방식은 중첩 형태의 데이터를 초반으로 분할하였을 경우로 카드 타입이 약 2.6%, 카드 배치 좌표가 약 1.8% 개선을 보였다.
Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.2168-2187
/
2021
The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.
In recent years, retinal disorders have become a serious health concern. Retinal disorders develop slowly and without obvious signs. To avoid vision deterioration, early detection and treatment are critical. Optical coherence tomography (OCT) is a non-invasive and non-contact medical imaging technique used to acquire informative and high-resolution image of retinal area and underlying layers. Disease signs are difficult to detect because OCT images have many areas which are not related to any disease. In this paper, we present a deep learning-based method to perform multi-label classification on a long-tailed OCT dataset. Our method first extracts the region of interest and then performs the classification task. We achieve 98% accuracy, 92% sensitivity, and 99% specificity on our private OCT dataset. Using the heatmap generated from trained convolutional neural network, our method is more robust and explainable than previous approaches because it focuses on areas that contain disease signs.
다수의 화자가 존재하는 음성에서 "누가 언제 발화했는가?"에 대해 레이블링하는 화자 분할은 발화 중첩 구간에 대한 레이블링과 화자 분할 모델의 최적화를 위해 심층 신경망 기반의 종단 간 방법에 대해 연구되었다. 대부분 심층 신경망 기반의 종단 간 화자 분할 시스템은 음성의 각 프레임에서 발화한 모든 화자의 레이블들을 추정하는 다중 레이블 분류 문제로 분할을 수행한다. 다중 레이블 기반의 화자 분할 시스템은 임계값을 어떤 값으로 설정하는지에 따라 모델의 성능이 많이 달라진다. 본 논문에서는 임계값 없이 화자 분할을 수행할 수 있도록 단일 레이블 분류를 이용한 화자 분할 시스템에 대해 연구하였다. 제안하는 화자 분할 시스템은 기존의 화자 레이블을 단일 레이블 형태로 변환하여 모델의 출력으로부터 레이블을 바로 추정한다. 훈련에서는 화자 레이블 순열을 고려하기 위해 Permutation Invariant Training(PIT) 손실함수와 교차 엔트로피 손실함수를 조합하여 사용하였다. 또한 심층 구조를 갖는 모델의 효과적인 학습을 위해 화자 분할 모델에 잔차 연결 구조를 추가하였다. 실험은 Librispeech 데이터베이스를 이용해 화자 2명에 대한 시뮬레이션 잡음 데이터를 생성하여 사용하였다. Diarization Error Rate(DER) 성능 평가 지수를 이용해 제안한 방법과 베이스라인 모델을 비교 평가했을 때, 제안한 방법이 임계값 없이 분할이 가능하며, 약 20.7 %만큼 향상된 성능을 보였다.
CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.
최근 많은 분야에서 기계학습에 대한 연구가 활발히 진행되고 있는데, 상당수의 연구들이 학습 모델의 성능을 개선하는 최신 방법론을 제시하고 있다. 본 연구에서는 방법론의 개발 못지않게 기계학습에 투입되는 훈련용 데이터의 '품질'을 개선하는 것 역시 중요하다는 점에 착안하여, 코퍼스 분석에서 자주 사용되는 '부분 문법' 처리 프로세스를 통해 훈련 데이터의 품질을 향상시키는 방법을 제시한다. 우리나라 100대 기업에 근무하는 재직자들이 채용플랫폼에 게시하는 방대한 양의 비정형 기업 리뷰 텍스트 데이터를 수집하고, 데이터 품질을 부분 문법 프로세스로 개선한 후, 부분 문법이 적용된 분류 모델이 적용되지 않은 모델보다 분류 성능이 우수함을 확인하였다. 분류 카테고리는 직원 몰입의 5가지 요인으로 상정하였는데, 국내 직장인들이 기업 리뷰가 각 유형별로 빈도에 차이가 있는지를 분석하였다. 추가로 리뷰 양상이 코로나 팬데믹 전후로 어떠한 변화가 있었는지도 분석하였다. 본 연구를 통해 국내 직장인들의 생생한 일터 경험들을 자동적으로 식별하고 분류하여, 이직을 포함한 주요한 조직문화 현상의 행태와 유발 원인 등을 유추해 볼 수 있는 근거를 제공한다.
글로벌 시대에 들어서면서 수입식품 안전관리에 대한 중요성이 증가하고 있다. 해외 식품업체 주소정보는 수입식품 안전관리를 위한 핵심 정보로써 식품위해 발생시 신속한 대처와 사후관리를 위해 반드시 검증되어야 한다. 그러나 각국의 주소체계가 다른 관계로 하나의 검증시스템이 모든 국가의 주소를 검증할 수는 없다. 또한, 주소검증은 사용하는 분야에 따라 검정목적이 상이할 수 있다. 본 논문에서는 주어진 해외 식품업체 주소로부터 해당 국가의 행정구역 레벨로 분류하는 문제를 다룬다. 수입식품 안전관리를 정확하고 효율적으로 하기 위하여 수입식품제조업체 주소를 해당 국가의 행정구역 수준으로 정확하게 매칭하는 것이 필요하다. 수입식품이 생산·제조되는 위치와 식품제조에 영향을 줄 수 있는 환경정보, 재난재해 정보를 결합함으로써 선제적 수입식품 안전관리가 가능하다. 그러나, 일부 국가에서는 주소를 표기할 때 행정구역 레벨명을 생략하여 작성하고 있으며, 동일한 지명이 여러 행정구역 레벨에서 중복되는 경우가 있어 주소로부터 행정구역 레벨을 정확히 분류하는 일은 쉽지 않다. 본 연구에서는 이러한 경우에 적합한 딥러닝 기반 행정구역 레벨 분류 모델을 제안하고, 실제 해외 식품회사 주소 데이터에 대하여 검증한다. 구체적으로 다중 레이블 분류 모델에서 멱집합(Label Powerset)을 이용해 훈련하는 방식을 사용한다. 제안된 기법의 검증을 위해 식약처에 등록된 에콰도르 및 베트남에 있는 해외 제조업소 주소에 대하여 정확도를 검증하였으며, 기존의 분류 모델보다 정확도가 각각 28.1% 및 13% 정도 향상되었다.
Ji Hyeon Shin;Seung Gyu Cho;Seo Ryong Koo;Seung Jun Lee
Nuclear Engineering and Technology
/
제56권2호
/
pp.558-567
/
2024
Diagnostic support systems are being researched to assist operators in identifying and responding to abnormal events in a nuclear power plant. Most studies to date have considered single abnormal events only, for which it is relatively straightforward to obtain data to train the deep learning model of the diagnostic support system. However, cases in which multiple abnormal events occur must also be considered, for which obtaining training data becomes difficult due to the large number of combinations of possible abnormal events. This study proposes an approach to maintain diagnostic performance for multiple abnormal events by training a deep learning model with data on single abnormal events only. The proposed approach is applied to an existing algorithm that can perform feature selection and multi-label classification. We choose an extremely randomized trees classifier to select dedicated monitoring parameters for target abnormal events. In diagnosing each event occurrence independently, two-channel convolutional neural networks are employed as sub-models. The algorithm was tested in a case study with various scenarios, including single and multiple abnormal events. Results demonstrated that the proposed approach maintained diagnostic performance for 15 single abnormal events and significantly improved performance for 105 multiple abnormal events compared to the base model.
International Journal of Computer Science & Network Security
/
제23권1호
/
pp.33-40
/
2023
Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.