• Title/Summary/Keyword: Multi-Joint Robot

Search Result 105, Processing Time 0.032 seconds

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

An Application of the Force Rllipsoid to the Ooptimal Load Distribution of Cooperating Robots (힘 타원을 이용한 다중 협력 작업 로봇의 최적 부하 분배에 관한 연구)

  • 서창원;최명환;조혜경;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.162-167
    • /
    • 1991
  • The manipulability ellipsoid and the force ellipsoid for a single robot are extended to the case of a multi-robot system. The force ellipsoid is applied to solve the optimal load distribution for the multi-robot system. Two cases are considered in solving the optimal load distribution. In one case, there are no constraints on the joint torques, and the analytic solution ;a given. In the other case, the torque constraints are given in terms of the maximum power consumption, and the algorithm for the solution is proposed.

  • PDF

Natural Resolution of DOF Redundancy in Execution of Robot Tasks;Stability on a Constraint Manifold

  • Arimoto, S.;Hashiguchi, H.;Bae, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • In order to enhance dexterity in execution of robot tasks, a redundant number of degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-fingered robot hands. Associated with such redundancy in the number of DOFs relative to the number of physical variables necessary and sufficient for description of a given task, an extra performance index is introduced for controlling such a redundant robot in order to avoid arising of an ill-posed problem of inverse kinematics from the task space to the joint space. This paper shows that such an ill-posedness of DOF redundancy can be resolved in a natural way by using a novel concept named “stability on a manifold”. To show this, two illustrative robot tasks 1) robotic handwriting and 2) control of an object posture via rolling contact by a multi-DOF finger are analyzed in details.

  • PDF

Approximated Generalized Torques by the Hydrodynamic Forces Acting on Legs of an Underwater Walking Robot

  • Jun, Bong-Huan;Shim, Hyung-Won;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.222-229
    • /
    • 2011
  • In this paper, we present the concept and main mission of the Crabster, an underwater walking robot. The main focus is on the modeling of drag and lift forces on the legs of the robot, which comprise the main difference in dynamic characteristics between on-land and underwater robots. Drag and lift forces acting on the underwater link are described as a function of the relative velocity of the link with respect to the fluid using the strip theory. Using the translational velocity of the link as the rotational velocity of the joint, we describe the drag force as a function of joint variables. Generalized drag torque is successfully derived from the drag force as a function of generalized variables and its first derivative, even though the arm has a roll joint and twist angles between the joints. To verify the proposed model, we conducted drag torque simulations using a simple Selective Compliant Articulated Robot Arm.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Design and Control of a Dexterous Multi-fingered Robot Hand

  • Chung, Woo-Jin;Lee, Hyung-Jin;Kim, Mun-Sang;Lee, Chong-Won;Kang, Bong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.1-83
    • /
    • 2001
  • This paper presents a three-fingered robot hand, called the KIST hand, Which have one active joint and one passive joint. The thumb is fixed on the palm, and the index and the middle take lateral motions symmetrically. A mechanical clutch and an embedded force sensor, attached on the distal link of the fingers, enable the KIST hand to perform human-like functions. A result of experiment shows reliable grasping performance of the hand which maintain stable grasp under disturbances.

  • PDF

Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand (공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험)

  • 류시복;홍예선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF

A Study on Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 예측에 관한 연구)

  • Lee, Ki-Joo;Yim, Hong-Jae;Kang, Yun-Seok;Park, Joong-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.559-562
    • /
    • 2005
  • When we analyze dynamics of a multi body system, a compliance of joints must be considered. If the virtual model for CAE(computer adied engineering) analysis is not considered compliance, the result of CAE analysis will be very different from the actual result. Especially in a biped walking robot, a compliance can be caused in joints of a walking robot, and the robot may lose walking stability. This paper proposes a compliance modeling method and the effectiveness of the compliance model is verified through experiments.

  • PDF

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF