• 제목/요약/키워드: Multi-Grounding System

검색결과 26건 처리시간 0.026초

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.234-237
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.234-234
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석 (The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System)

  • 정금영;최선규;심건보;김경철
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

축소모델기법을 이용한 다중접지계의 특성분석 (Characteristic Analysis of Multi-grounding System by Using a Scale Model Technique)

  • 이재복;명성호;장석훈;조연규;김점식;길경석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1738-1740
    • /
    • 2003
  • This paper deals with the characteristic analysis of multi-grounding system. In order to assess the effectiveness of bonding two grounding systems, the scale model grounding simulation system and grid grounding conductors which were downsized as a scale factor of 100:1 were designed and fabricated. A profile of GPR(Grounding Potential Rise) of each case was measured. Also the measured results were compared with the analysis results.

  • PDF

건축전기설비에 적용되는 접지시스템 문제점과 개선방안 (Problems and Improvement Method of Grounding System in Electrical Facilities)

  • 정용기;곽희로;신효섭;정춘병;남택주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.47-50
    • /
    • 2001
  • Presently the Korean grounding system uses TN system, multi-grounding method with TT independent grounding method. Nevertheless TN system can't exist with TT system in the technological terms. If they coexist, it causes ground-fault circuit not to operate, and brings about different electrical potential rise by customer system. It brings about serious problems for safety. This paper aims for improving method of grounding system based on the technical analysis on instances in foreign countries and Korea. Almost standards and construction manner were apt to be internationalized after WTO/TBT agreement was concluded. The internal grounding systems should meet the international criteria and reliability for safety, and be provided with technologically impeccable standards.

  • PDF

방식층 보호장치 결선방식의 혼용에 따른 영향분석 (The Effects of Multi-Bonding Methods for Cable Covering Protection Unit)

  • 김정년;하체웅;이수길
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권10호
    • /
    • pp.489-492
    • /
    • 2001
  • The connection method of CCPU has been changed from connection between sheath and grounding to connection between sheaths without grounding since 1997. In domestic, there is so many cases that cables circuits were installed before 1997, added in same route after that, operated as multi-connecting systems of CCPU in same route. This paper examine the problem of multi-connecting system by EMTP simulation, and presents methods to improve the system characteristics.

  • PDF

용담댐 발전소 접지설계를 위한 대지비저항 모델링 및 접지저항 추정 (Earth Resistivity Modelling and Grounding Resistance Estimation for Yongdam Dam Power Station Grounding Design)

  • 오민환;김형수;김종득
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1188-1191
    • /
    • 1998
  • Detailed estimation of subsurface resistivity distribution and accurate estimation of actual fault current coming into the grounding system are indispensible to optimun grounding system design. Especially, it is essential for efficient grounding design to estimate subsurface resistivity distribution quantitatively and logically. Accurate estimation of subsurface resistivity distribution has an absolute influence on calculating touch voltage, step voltage and ground potential rise (GPR) which are related with grounding design standard for human safety. In this study, thirty-three electrical sounding surveys were made in Yongdam Power Station to obtain detailed subsurface resistivity distribution and the sounding data were interpreted quantitatively using multi-layered model. The results of the quantitative resistivity models were adopted practically to calculate grounding resistance values. Analytical asymptotic equations and CDEGS program were used in grounding resistance calculation and the results were compared and reviewed in the study.

  • PDF

다층 대지구조에서 수직 접지전극의 임계길이 산정 (Computation of the Critical Lengths of the Vertical Grounding Electrode in Multi-Layered Soil Structures)

  • 김기복;조정현;이복희
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.73-80
    • /
    • 2010
  • 접지임피던스는 접지전극의 크기를 증가시켜도 낮아지지 않고, 토양의 특성과 주파수 조건에 따라 접지 임피던스가 최소값을 보이는 접지전극의 길이가 존재하며, 이 접지전극의 길이를 각 토양 특성과 주파수에 따른 임계길이라 한다. 본 논문에서는 대지구조의 조건을 고려하는 새로운 분포정수회로모델을 제안하였으며, 새로이 제안된 해석모델을 적용하여 MATLAB프로그램으로 수직접지전극의 임계길이와 접지임피던스를 해석하였다. 그 결과, 수직접지전극의 임계길이와 접지임피던스의 주파수의존성에 대한 대지구조의 영향이 크며, 접지시스템의 최적 설계를 위해서는 대지구조를 고려하는 것이 바람직한 것으로 밝혀졌다.

건축전기설비에 적용되는 접지시스템 문제점과 개선방안 (Problems and Inprovement Method of Grounding System in Electrical Facilities)

  • 정용기;곽희로;신효섭;정춘병;남택주
    • 전기기술인
    • /
    • 제228권8호
    • /
    • pp.52-57
    • /
    • 2001
  • 전기설비 분야에서는 사용하는 전압규격과 사용방식, 접지 System이 어떻게 조화를 이루냐에 따라 안전에 대한 확보여부가 결정된다. 지락 사고시 지락전류는 일정한 어느 한 부분으로만 흐르는 것이 아니라 접지저항의 상황에 따라 분류한다. 이러한 이유로 접지사항이 낮으면 안전하고 높으면 위험하다는 일반적인 잘못된 생각이 사고를 크게 확대시킬 수 있다.

  • PDF