• Title/Summary/Keyword: Multi-GNSS

Search Result 100, Processing Time 0.026 seconds

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Parametric Analysis of the Solar Radiation Pressure Model for Precision GPS Orbit Determination

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • The SRP (Solar Radiation Pressure) model has always been an issue in the dynamic GPS (Global Positioning System) orbit determination. The widely used CODE (Center for Orbit Determination in Europe) model and its variants have nine parameters to estimate the solar radiation pressure from the Sun and to absorb the remaining forces. However, these parameters show a very high correlation with each other and, therefore, only several of them are estimated at most of the IGS (International GNSS Service) analysis centers. In this study, we attempted to numerically verify the correlation between the parameters. For this purpose, a bi-directional, multi-step numerical integrator was developed. The correlation between the SRP parameters was analyzed in terms of post-fit residuals of the orbit. The integrated orbit was fitted to the IGS final orbit as external observations. On top of the parametric analysis of the SRP parameters, we also verified the capabilities of orbit prediction at later time epochs. As a secondary criterion for orbit quality, the positional discontinuity of the daily arcs was also analyzed. The resulting post-fit RMSE (Root-Mean-Squared Error) shows a level of 4.8 mm on average and there is no significant difference between block types. Since the once-per-revolution parameters in the Y-axis are highly correlated with those in the B-axis, the periodic terms in the D- and Y-axis are constrained to zero in order to resolve the correlations. The 6-hr predicted orbit based on the previous day yields about 3 cm or less compared to the IGS final orbit for a week, and reaches up to 6 cm for 24 hours (except for one day). The mean positional discontinuity at the boundary of two 1-day arcs is on the level of 1.4 cm for all non-eclipsing satellites. The developed orbit integrator shows a high performance in statistics of RMSE and positional discontinuity, as well as the separations of the dynamic parameters. In further research, additional verification of the reference frame for the estimated orbit using SLR is necessary to confirm the consistency of the orbit frames.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

Design and Implementation for Efficient Multi Version ADS-B Target Report Message Processing (효율적인 다중 버전 ADS-B 타깃 리포트 메시지 처리를 위한 모듈 설계 및 구현)

  • Kim, Kanghee;Jang, Eunmee;Song, Inseong;Cho, Taehwan;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.265-277
    • /
    • 2015
  • Automatic dependent surveillance-broadcast (ADS-B) is the core technology of communication, navigation and surveillance/air traffic management (CNS/ATM), automatically broadcasts its own position information using GNSS and has an advantage of lower geological constraints and faster update speed compared with legacy radar systems. EUROCONTROL defined all purpose structured eurocontrol surveillance information exchange (ASTERIX) CAT.021. ASTERIX CAT.021 is modified several times, but it has compatibility issues with previous version of it. In this paper, we have designed an efficient message processing module regardless of the version of ASTERIX CAT.021. This implemented module generates patterns to collect messages received from the network, after that, received messages are processed in the routine that is defined in accordance with the patterns.

A Study on the Navigation Parameters of L1, C/A GPS through the Experimental and Statistical Analysis (실험 및 통계적 분석을 통한 L1, C/A코드 GPS의 항법 파라미터연구)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1959-1964
    • /
    • 2015
  • This research was focused on the analysis of navigation parameters from the received L1, C/A signal of the recent GPS, which has advanced with the SA policy change and the GPS modernization policy by the United States. It was done as a first step study for a comprehensive analysis on the multiple satellite navigation systems which will be adding or separating GPS signal. In particular, the statistical analysis on the GDOP change and positional accuracy based on the geocentric and spherical coordinate systems were investigated with carrier- to-noise ratio and the satellite geometry, The obtained GDOP values of HDOP, PDOP, VDOP are 0.5, 1.2, and 1.1, respectively in deviation. In addition, the positioning accuracies with these GDOP values were analyzed in the ellipsoidal and ECEF coordinates.

A Positioning Algorithm Using Virtual Reference for Accuracy Improvement in Relay-Based Navigation System (중계 기반 항법시스템에서 위치정확도 향상을 위한 가상 기준점 활용 측위 알고리즘)

  • Lee, Kyuman;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2102-2112
    • /
    • 2015
  • In this paper, we propose a new positioning scheme for accuracy improvement of Relay-based Navigation System. The conventional relay-based system occurs larger vertical error than horizontal one due to structural characteristics that positioning references are located toward same direction and a location of user is estimated by triangulation technique. In the proposed positioning scheme, the user position is reestimated using an additional virtual reference which is generated based on position information of reference stations in navigation signals and estimated initial user position. The nearest reference station from the estimated user position is selected as a virtual reference to minimize the effect of geometrical factor. The vertical error decreases by using reference points on multi planes, therefore, accurate positioning is possible than the conventional scheme. We demonstrated that the accuracy of a user is improved through simulation results.

A Narrowband Interference Excision Algorithm in the Frequency Domain for GNSS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.359-364
    • /
    • 2006
  • Interference can seriously degrade the performance of GPS receiver because GPS signal has extremely low power at earth surface. This paper presents a Narrowband Interference Excision Filter (NIEF) in frequency domain that removes narrowband interferences with small signal loss. A NIEF transforms the received GPS signals with interferences into the frequency domain with FFT and then compute statistics such as mean and standard deviation to determine an excision threshold. All spectrums exceeding the threshold are removed and the remaining spectrums are restored by IFFT. A NIEF effectively can remove various and strong interferences with a simple structure. However, the signal power loss is unavoidable during FFT and IFFT. Besides the hamming window and overlap technique, a threshold-whitening technique and an adaptive detection threshold are adopted to effectively reduce the signal power loss. The performance of implemented NIEF is evaluated using real signals obtained by 12 bit GPS signal acquisition board. The output of NIEF is fed into the Software Defined Receiver to evaluate the acquisition and tracking performance. Experimental results shows that many types of interference such as single-tone CWI, AM, FM, swept CWI and multi-tones CWI are effectively mitigated with small signal power loss.

  • PDF

A Study on The Reality of Loran-C System and Its Applications (로란-C 시스템의 현황과 효율적인 활용방안에 관한 연구)

  • Kwon, Hyuk-Dong;Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.61-67
    • /
    • 2004
  • The development motive and maintenance of navigation system were military strategy purpose since middle of 20th century. During cold war period between the United States and the Soviet since the Second World War, advanced navigation system that two countries are responded individually have done development competitively. These systems are exhibited on general except military purpose gradually and are taking charge of point role in economy transport activity such as transportation of logistics between the country. Navigation system can divide into ground system and satellite system. Representative system of ground system is Loran-C(Long Range Navigation), and representative system of satellite system is GPS(Global Position System). Loran-C system is a system that use much in all the world country sea and ground, but GPS and DGPS that present is a satellite navigation system are used much. According to development of satellite system, examine about actual conditions of Loran-C navigation system and practical use plan in this paper because there is controversy about role of Loran-C navigation device along with Loran-C's operation and user decrease, and discusses for Loran-C's development direction.

  • PDF

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Characteristics and Status of Commercial System for Utilizing MMS in Geospatial Information Construction (공간정보 구축 분야의 모바일 매핑 시스템 활용을 위한 상용 시스템의 특징 및 현황 조사)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.36-41
    • /
    • 2017
  • The mobile mapping system first introduced at Ohio State University in 1991 is being developed in various forms as sensor technology develops. The mobile mapping system can acquire geospatial information around amoving object quickly using the information gathered using the position and attitude information of the moving object and the data from various sensors. The mobile mapping system can rapidly acquire large amounts of Geospatial information and MMS provides maximum productivity in the same measurement methods as existing GNSS and total stations. Currently, a variety of systems are being launched, mainly by foreign companies, and they are applied to the construction of geospatial information. On the other hand, the application of domestic technology development or production is insufficient. This paper provides basic data for the introduction of a mobile mapping system to geospatial information related business by conducting the status survey and feature analysis of a commercialized system focusing on the ground-based mobile mapping system. The research identified the current status and characteristics of high-priced, low-priced, indoor, and handheld mobile mapping systems based on vehicles and suggest that the recent system development trends are moving toward lowering the unit prices. The mobile mapping system is currently being developed as a platform for the application of geospatial information construction and the launch of low-cost models. The development of data processing technologies, such as automatic matching and the launch of low-cost models, are forming a basis for the application of mobile mapping systems in the field of geospatial information construction.