• Title/Summary/Keyword: Multi-Document Summarization

Search Result 19, Processing Time 0.028 seconds

Multi-Document Summarization using Time Feature (시간자질을 이용한 다중 문서요약)

  • 임정민;강인수;배재학;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.898-900
    • /
    • 2004
  • 시간에 중속적인 문서집합에서 사람이 만든 요약문은 시간에 따른 중요 내용의 분포를 보여준다. 본 논문은 다중 문서에 시간 자질을 이용한 문서의 분류와 시간별 문서집합에서 핵심문장과 부가문장을 선별하고, 문장간의 계층적인 클러스터링을 통해서 중요 문장을 선별하는 방법을 제안한다. 동일한 주제를 갖는 문서집합에서 사랑이 선택한 중요 문장에 대해서 제안한 방법은 50% 정확률을 나타냈다.

  • PDF

Study on Designing and Implementing Online Customer Analysis System based on Relational and Multi-dimensional Model (관계형 다차원모델에 기반한 온라인 고객리뷰 분석시스템의 설계 및 구현)

  • Kim, Keun-Hyung;Song, Wang-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.76-85
    • /
    • 2012
  • Through opinion mining, we can analyze the degree of positive or negative sentiments that customers feel about important entities or attributes in online customer reviews. But, the limit of the opinion mining techniques is to provide only simple functions in analyzing the reviews. In this paper, we proposed novel techniques that can analyze the online customer reviews multi-dimensionally. The novel technique is to modify the existing OLAP techniques so that they can be applied to text data. The novel technique, that is, multi-dimensional analytic model consists of noun, adjective and document axes which are converted into four relational tables in relational database. The multi-dimensional analysis model would be new framework which can converge the existing opinion mining, information summarization and clustering algorithms. In this paper, we implemented the multi-dimensional analysis model and algorithms. we recognized that the system would enable us to analyze the online customer reviews more complexly.

An Experimental Study on Automatic Summarization of Multiple News Articles (복수의 신문기사 자동요약에 관한 실험적 연구)

  • Kim, Yong-Kwang;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.83-98
    • /
    • 2006
  • This study proposes a template-based method of automatic summarization of multiple news articles using the semantic categories of sentences. First, the semantic categories for core information to be included in a summary are identified from training set of documents and their summaries. Then, cue words for each slot of the template are selected for later classification of news sentences into relevant slots. When a news article is input, its event/accident category is identified, and key sentences are extracted from the news article and filled in the relevant slots. The template filled with simple sentences rather than original long sentences is used to generate a summary for an event/accident. In the user evaluation of the generated summaries, the results showed the 54.l% recall ratio and the 58.l% precision ratio in essential information extraction and 11.6% redundancy ratio.

A Study on an Effective Event Detection Method for Event-Focused News Summarization (사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구)

  • Chung, Young-Mee;Kim, Yong-Kwang
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.4
    • /
    • pp.227-243
    • /
    • 2008
  • This study investigates an event detection method with the aim of generating an event-focused news summary from a set of news articles on a certain event using a multi-document summarization technique. The event detection method first classifies news articles into the event related topic categories by employing a SVM classifier and then creates event clusters containing news articles on an event by a modified single pass clustering algorithm. The clustering algorithm applies a time penalty function as well as cluster partitioning to enhance the clustering performance. It was found that the event detection method proposed in this study showed a satisfactory performance in terms of both the F-measure and the detection cost.

Multi-Document Summarization Using Tag Cluster (태그 클러스터를 이용한 다중문서요약 기법)

  • Heu, Jee-Uk;Jeong, Jin-Woo;Hong, Hyun-Ki;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.45-48
    • /
    • 2011
  • 오늘날 인터넷의 빠른 보급으로 인하여 웹 상에 생성되는 문서의 양은 하루가 다르게 늘어나고 있다. 이러한 엄청난 양의 문서들 중 사용자는 자신이 원하는 정보가 담긴 문서를 얻기 위해서는 직접 문서를 검토해야 하며, 많은 시간이 투자 된다는 어려움이 있다. 이러한 사용자들의 어려움을 줄이기 위하여 문서의 핵심을 유지하며 양을 줄이는 다중문서요약기업에 대한 연구가 활발히 진행되어왔다. 본 논문에서는 효율적이고 빠른 문서 요약을 위하여 폭소노미 시스템인 플리커를 통하여 문서 내에 존재하는 각 단어들의 클러스터를 획득하고, 이를 기반으로 단어들의 중요도를 분석하여 중요문장을 추려내는 다중문서요약 기법을 제안한다.

Topic-Based Multi-Document Summarization using Semantic Features of Documents (문서의 의미특징을 이용한 주제 기반의 다중문서 요약)

  • Park, Sun;An, Dong Un;Kim, Chul-Won
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.715-716
    • /
    • 2009
  • 인터넷의 발전은 대량의 정보를 양산하였고, 이러한 대량의 정보 집합 내에서는 비슷한 정보가 재활용 되거나 반복되는 정보중복문제를 가지고 있다. 중복되는 정보들로부터 사용자에게 원하는 정보를 신속히 검색할 수 있도록 하는 정보 요약에 대한 필요성은 점차 증가하고 있다. 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)에 의한 문서의 의미특징을 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안한다. 본 논문에서는 다중문서가 포함하고 있는 문서들 간의 고유구조를 문서요약에 이용하여서 요약의 질을 높일 수 있고, 주제와 문장 간의 유사성과 다양성 고려하여서 쉽게 과잉정보를 제거하여 문장을 요약할 수 있는 장점을 갖는다.

Multi-document Summarization using Non-negative Matrix Factorization and NMF Clustering Method (비음수 행렬 인수분해와 NMF 군집방법을 이용한 다중문서요약)

  • Park, Sun;Lee, Ju-Hong;Kim, Chul-Won
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.427-430
    • /
    • 2008
  • 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)와 NMF 군집방법을 이용하여 다중문서를 요약하는 새로운 방법을 제안하였다. 본 논문에서 NMF에 의해 계산된 의미 특징(semantic feature)은 문서의 고유 구조(inherent structure)를 반영하여 문장을 추출함으로써 요약의 질을 높일 수 있고, 의미 변수(semantic variable)를 이용한 문장의 군집은 문장 간의 유사성과 다양성 고려하여서 쉽게 과잉정보를 제거하여 문장을 요약할 수 있는 장점을 갖는다.

News Clustering and Multi-Document Summarization for Real-time Issue Analysis (실시간 이슈 분석을 위한 뉴스 군집화 및 다중 문서 요약)

  • Yu, Hongyeon;Lee, Seungwoo;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.132-137
    • /
    • 2018
  • 뉴스 기반의 실시간 이슈 분석을 위해서는 실시간으로 생성되는 다중 뉴스 기사 집합을 입력으로 받아 점증적으로 군집화 하고, 각 군집별 정보를 자동으로 요약하는 기술이 필요하다. 기존에는 정적인 데이터 기반의 군집화와 요약 각각에 대한 연구는 활발히 진행되고 있지만, 실시간으로 입력되는 대량의 데이터를 위한 점증적인 군집화와 요약에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 실시간으로 입력되는 대량의 뉴스 기사 집합을 분석하기 위한 점증적이고 계층적인 뉴스 군집화 및 다중 문서 요약 방법을 제안한다. 평가를 위해서 2016년 10월, 11월 두 달간의 실제 데이터를 사용 하였으며, 전문 교육을 받은 연구원들이 Precision at k 기반의 정성평가를 진행하였다. 그 결과, 자동으로 생성된 12개의 군집에서 군집 성능은 평균 66% (상위계층 $l_1$: 82%, 하위계층 $l_2$: 43%), 요약 성능은 평균 92%를 얻었다.

  • PDF

Sentence Extraction Using Adapting Method in Multi-Document Summarization (다중문서 요약에서 적응 기법을 이용한 문장 추출)

  • Lim, Jung-Min;Kang, In-Su;Bae, Jae-Hak J.;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.12-19
    • /
    • 2004
  • 기존의 다중 문서요약은 전체 대상문서에 대해서 한번에 요약문을 생산하지만, 본 논문은 요약 대상문서 집합에서 핵심내용을 갖는 문서를 기본 문서로 선택, 임시 요약문장을 추출하고 대상문서 집합에서 순차적으로 문서를 입력받아 중요문장을 추출, 이전에 구축된 요약문장과 현재 추출된 문장을 비교하면서 요약에 필요한 문장을 선택하는 적응 기법을 제안한다. 제안한 방법으로 구현한 시스템은 NTCIR TSC 3에서 사용된 29개의 다중 문서집합을 통해서 성능을 평가하였다. 적응 기법 시스템은 TSC3의 baseline시스템인 Lead 방법보다는 높은 성능을 나타냈지만, TSC 3에 참가한 시스템들과의 비교에서는 월등한 성능 우위를 나타내지 못했다.

  • PDF