Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2018.10a
- /
- Pages.132-137
- /
- 2018
- /
- 2005-3053(pISSN)
News Clustering and Multi-Document Summarization for Real-time Issue Analysis
실시간 이슈 분석을 위한 뉴스 군집화 및 다중 문서 요약
- Yu, Hongyeon (Dong-A University) ;
- Lee, Seungwoo (Korea Institute of Science and Technology Information (KISTI)) ;
- Ko, Youngjoong (Dong-A University)
- Published : 2018.10.12
Abstract
뉴스 기반의 실시간 이슈 분석을 위해서는 실시간으로 생성되는 다중 뉴스 기사 집합을 입력으로 받아 점증적으로 군집화 하고, 각 군집별 정보를 자동으로 요약하는 기술이 필요하다. 기존에는 정적인 데이터 기반의 군집화와 요약 각각에 대한 연구는 활발히 진행되고 있지만, 실시간으로 입력되는 대량의 데이터를 위한 점증적인 군집화와 요약에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 실시간으로 입력되는 대량의 뉴스 기사 집합을 분석하기 위한 점증적이고 계층적인 뉴스 군집화 및 다중 문서 요약 방법을 제안한다. 평가를 위해서 2016년 10월, 11월 두 달간의 실제 데이터를 사용 하였으며, 전문 교육을 받은 연구원들이 Precision at k 기반의 정성평가를 진행하였다. 그 결과, 자동으로 생성된 12개의 군집에서 군집 성능은 평균 66% (상위계층