• Title/Summary/Keyword: Multi-Control System

Search Result 3,026, Processing Time 0.031 seconds

Development of multi-object image processing algorithm in a image plane (한 이미지 평면에 있는 다물체 화상처리 기법 개발)

  • 장완식;윤현권;김재확
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.555-555
    • /
    • 2000
  • This study is concentrated on the development of hight speed multi-object image processing algorithm, and based on these a1gorithm, vision control scheme is developed for the robot's position control in real time. Recently, the use of vision system is rapidly increasing in robot's position centre. To apply vision system in robot's position control, it is necessary to transform the physical coordinate of object into the image information acquired by CCD camera, which is called image processing. Thus, to control the robot's point position in real time, we have to know the center point of object in image plane. Particularly, in case of rigid body, the center points of multi-object must be calculated in a image plane at the same time. To solve these problems, the algorithm of multi-object for rigid body control is developed.

  • PDF

Decentralized Input-Output Feedback Linearizing Control for a Multi-Machine Power System using Output Modification (수정된 출력을 이용한 다기 전력 계통의 분살 입출력 되먹임 선형화 제어)

  • Jee, Hwang;Yoon, Tae-Woong;Kim, Seok-Kyoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.291-294
    • /
    • 2006
  • This paper presents a decentralized input-output feedback linearizing controller for a multi-machine power system. Firstly, the controller is designed using input-output feedback linearization for modified outputs. Then we present a guideline for selecting gains of the controller and parameters in the modified outputs. Simulations illustrate the effectiveness of the proposed control scheme and the selection guideline.

  • PDF

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems (불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

Processing Time Optimization of an Electronic Stability Control system design Using Multi-Cores for AURIX TC 275 (AURIX TC 275에서 멀티코어를 이용한 Electronic Stability Control의 수행시간 최적화)

  • Jang, Hong-Soon;Cho, Young-Hwan;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2021
  • This study proposes a multi-core-based controller design for an ESC(Electronic Stability Control) system in an automotive multi-core processor. Considering the architectures of an automotive multi-core processor and an ESC system, the overall execution time has been optimized for multi-core platforms. The function module assignment, synchronization between cores, and memory assignment for core-dependent variables in automotive multi-core systems are evaluated. The ESC controller comprising five function modules is used herein. Based on the proposed design, the single-core controller is extended to multi-core controllers. Using multi-core optimization methods, such as function module assignment, semaphore, interrupt awakening, and variable assignment over cores, the ESC system is redesigned to a multi-core controller. Experimental results reveal that the execution time for the multi-core processor is reduced by 59.7% compared with that for the single-core processor.

A Multi-Channel Active Noise Control System for Controlling Humming Noise Generated by a Transformer (변압기 소음제어를 위한 다중채널 능동소음제어 시스템)

  • 이혁재;박영철;윤대희;차일환
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1137-1144
    • /
    • 1999
  • Most of ANC(active noise control) researches are focused on adaptive algorithms, computer simulations and implementations of single-channel system in experimental environments. In this paper, a multi-channel ANC system based on DSP's was developed to obtain global attenuations over wide region and applied to the active control of the humming noise generated by a transformer. The developed ANC system including 24 microphones and 12 spearkers was applied to the real transformer noise reduction problem. Results showed that the control system could successfully control the humming noise over the region of interest.

  • PDF

Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems (장주기모델로 구성된 다개체시스템의 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

Study about Windows System Control Using Gesture and Speech Recognition (제스처 및 음성 인식을 이용한 윈도우 시스템 제어에 관한 연구)

  • 김주홍;진성일이남호이용범
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1289-1292
    • /
    • 1998
  • HCI(human computer interface) technologies have been often implemented using mouse, keyboard and joystick. Because mouse and keyboard are used only in limited situation, More natural HCI methods such as speech based method and gesture based method recently attract wide attention. In this paper, we present multi-modal input system to control Windows system for practical use of multi-media computer. Our multi-modal input system consists of three parts. First one is virtual-hand mouse part. This part is to replace mouse control with a set of gestures. Second one is Windows control system using speech recognition. Third one is Windows control system using gesture recognition. We introduce neural network and HMM methods to recognize speeches and gestures. The results of three parts interface directly to CPU and through Windows.

  • PDF

Development of Multi-functional Control Module for $CO_2$ Welding to Improve Confidence (신뢰성 향상을 위한 $CO_2$ 용접용 다기능 제어모듈의 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;Park, Sung-Won;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.203-210
    • /
    • 2005
  • In this paper, a multi-functional control module is developed to improve the confidence of $CO_2$ welding. In the developed system, a main controller of an automatic welding system including I/O port is modulated by microprocessor. The developed multi-functional control module is familiarized to the conventional automatic welding system. Therefore, the confidence of $CO_2$ welding is improved when the main controller of an automatic welding system is broken down.

Control for Multi-variable in Crane System using Fuzzy Learning Method (퍼지학습법을 이용한 크레인 시스템의 다변수 제어)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.144-150
    • /
    • 1999
  • n active control for the swing of crane systems is very important for increasing the productivity. This article introduces the control for the position and the swing of a crane using the fuzzy learning method. Because the crane is a multi-variable system, learning is done to control both position and swing of the crane. Also the fuzzy control rules are separately acquired with the loading and unloading situation of the crane for more accurate control. The result of simulations shows that the crane is just controlled for a very large swing angle of 1 radian within nearly one cycle.

  • PDF