• Title/Summary/Keyword: Multi-Cavity

Search Result 245, Processing Time 0.022 seconds

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF

Combination of Preconditioned Krylov Subspace Methods and Multi-grid Method for Convergence Acceleration of the incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식의 수렴 가속을 위한 예조건화 Krylov 부공간법과 다중 격자법의 결합)

  • Maeng Joo Sung;Choi IL Kon;Lim Youn Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.106-112
    • /
    • 1999
  • In this article, combination of the FAS-FMG multi-grid method and the Krylov subspace method was presented in solving two dimensional driven-cavity flows. Three algorithms of the Krylov subspace method, CG, CGSTAB(Bi-CG Stabilized) and GMRES method were tested with MILU preconditioner. As a smoother of the pressure correction equation, the MILU-CG is recommended rather than MILU-GMRES(k) or MILU-CGSTAB, since the MILU-GMRES(k) preconditioner has too much computation on the coarse grid compared to the MILU-CG one. As for the momentum equation, relatively cheap smoother like SIP solver may be sufficient.

  • PDF

The Analysis on the Variation of the Ventilation Rates by Wind Pressure and Temperature Difference between Indoor and Outdoor in the Multi-Story Type Double Skin Facade applied to the Office Building (오피스 건물에 적용된 다층형 이중외피의 풍압과 실내·외 온도차에 의한 환기량 변화 분석)

  • Song, Chi-Ho;Kim, Teayeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Purpose : Improvement of indoor thermal comfort and reduction of the energy consumption in building can be obtained by applying a double skin facade system. In order to achieve effectively this purpose, design team would have to perform easy and appropriate performance analysis for making better design decision during the design process. Method : This paper focus on the natural ventilation performance of a multi-story type double skin facade with main causes which are pressure difference according to the wind and temperature difference between indoor and outdoor (Buoyancy Effect). Using this main causes, the natural ventilation ratio of wind effect-to-buoyancy effect in cavity of multi-story type double skin facade were analyzed through the performance analysis results of CFD (Computational Fluid Dynamics) simulation. Result : When the wind velocity was 2m/s, the ventilation rate in the cavity was highest. If wind velocity was slower than 2m/s wind velocity, buoyancy effect has more influence on the ventilation rate in the cavity, and if wind velocity was faster than 2m/s wind velocity, wind effect has more influence on the ventilation rate in the cavity.

A study on the runner system for filling balance in multi-cavity injection molds (다수 캐비티 사출금형에서의 균형 충전을 위한 러너 시스템 연구)

  • Jeon, Kang-Il;Noh, Seung-Kyu;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1581-1588
    • /
    • 2011
  • In this study, flow characteristics in a multi-cavity injection molding process were investigated. One of main problems occurred in the multi-cavity molding is a flow imbalance among cavities since it affects physical properties and quality of products. Charge imbalance is caused by the uneven shear stress. Therefore, changes in viscosity affect the physical properties of resin and injection conditions differ in the filling imbalance phenomenon. Through, this study focus on experimental studies of flow imbalance for PC and PP resin occurring in a balanced delivery system. Experimental results were compared with CAE results. By experimental and CAE analysis, main cause for the flow imbalance is temperature distribution in cross section of runner. New runner system with a simple change of runner shape was suggested to avoid the flow imbalance. A series of simulation to confirm feasibility of Volume Runner's effects was conducted using injection molding CAE.

On the new mold structure with multi-point gate for filling-balance mold (다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.144-149
    • /
    • 2008
  • Configuration of filling imbalance which is originated from imbalanced share rate of melt on runner is changed by runner layout, runner shape, material property, injection pressure, injection speed, melt temperature and mold temperature. In this paper, we conducted a study of runner layout and shape that are main factors of filling imbalance. Other factors such as the sharp corner effect and the groove corner effect are recently released were also considered. The results of study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Especially, this study suggests a new runner system for filling balance by adapting the two effects of unary branch type runner at multi cavity mold and theoretical investigated flow in the sharp corner type runner.

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

Widely Tunable Grating Cavity Lasers

  • Kwon, Oh-Kee;Sim, Eun-Deok;Kim, Kang-Ho;Kim, Jong-Hoi;Yun, Ho-Gyeong;Kwon, O-Kyun;Oh, Kwang-Ryong
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.545-554
    • /
    • 2006
  • A widely tunable multi-channel grating cavity laser is proposed and experimentally demonstrated. The device is implemented in Littman configuration with an echelle grating based on Rowland circle construction and realized by monolithically integrating all elements in an InP substrate. Lasing wavelength is selected by turning on an amplifier and the appropriate channel element in the array, and it is tuned by controlling light deflection electrically. The 6-channel device exhibits a tuning range of about 50 nm with a side mode suppression ratio of more than 30 dB. This is accomplished by adjusting the applied current of the dispersive element and phase control section.

  • PDF