• Title/Summary/Keyword: Multi-Body Dynamics Simulation

Search Result 150, Processing Time 0.023 seconds

Study on the Available Power of a Wind Turbine for Wind Farm Control (풍력단지 제어를 위한 생산가능 출력에 대한 연구)

  • Oh, Yong Oon;Paek, In Su;Nam, Yoon Su;La, Yo Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A study on the available power of a wind turbine to be used for wind farm control was performed in this study, To accurately estimate the available power it is important to obtain a suitable wind which represents the three dimensional wind that the wind turbine rotor faces and also used to calculate the power. For this, two different models, the equivalent wind and the wind speed estimator were constructed and used for dynamic simulation using matlab simulink. From the comparison of the simulation result with that from a commercial code based on multi-body dynamics, it was found that using the hub height wind to estimate available power from a turbine results in high frequency components in the power prediction which is, in reality, filtered out by the rotor inertia. It was also found that the wind speed estimator yielded less error than the equivalent wind when compared with the result from the commercial code.

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock (열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법)

  • Park, Min-Young;Park, Young-Il;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

Optimum Latch Contour Design for Improving Gas Circuit Breaker Performance (가스회로차단기의 성능 개선을 위한 윤곽 최적설계)

  • Choi, Gyu Seok;Cha, Hyun Kyung;Sohn, Jeong Hyun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The dynamic characteristics of a gas circuit breaker depend on the underlying high-speed operating mechanism with a spring-actuated latch system. Many studies have been carried out to reduce the breaking time of circuit breakers. In this study, the optimum latch contour design is determined for reducing the breaking time of a circuit breaker. A multi-body dynamic model of the latch is established for analyzing the dynamic behaviors of the circuit breaker by using the MSC/ADAMS program. Simulation results are matched against experimental data. VisualDoc is employed for determining the optimal latch contour. From the optimum design, the breaking time of a gas circuit breaker is improved by about 8.6%.

Dynamic Response Simulation of a Heavy Cargo Suspended by Parallel Connected Floating Cranes (병렬 연결된 해상 크레인을 이용한 대형 중량물 인양 작업의 동적 거동 계산 시뮬레이션)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.681-689
    • /
    • 2012
  • In this study, we performed a simulation of the dynamic response of a multibody system to calculate the tension acting on wire ropes connecting floating cranes and a heavy cargo such as a Giga Block weighing over 5000 tons when the cargo is salvaged using parallel connected floating cranes. In this simulation, we supposed that the motion of the floating cranes, barge ship, and heavy cargo has 6 degrees of freedom and that the interaction is determined by constraints among them. In addition, we considered independent hydrostatic and hydrodynamic forces as external forces acting on the floating cranes and barge ship. The simulation result can be a basis for verifying the safety of construction methods in which heavy cargo is salvaged by parallel connected floating cranes, and it can also be used to guide the development of such construction methods.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

A Study on the Steering Performance and Turning Radius of Four-Rows Tracked Vehicle on Hard Ground

  • Oh, Jaewon;Lee, Changho;Min, Cheonhong;Hong, Sup;Cho, Huije;Kim, Hyungwoo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.134-147
    • /
    • 2015
  • This study proposes a method to determine the effective angular velocity of each motor of a specific four-rows tracked vehicle (FRTV) in order to follow a given turning radius. The configuration of the four-rows tracked vehicle is introduced, and its dynamics analysis model is built using the DAFUL commercial software. The soil has been assumed to be hard ground, and the friction force between the ground and the tracked links is calculated using the Coulomb friction model. This paper uses a simulation to show that the error in the position increased with respect to the angle of the curvatures, so a method is proposed to compensate for the error in the motion of the motors. Various simulations are then carried out to verify the proposed formulation. The effects of the soil characteristics and the driving velocity will be further investigated in future studies.

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.

DEVELOPMENT OF MISSION ADN SPACECRAFT DYNAMICS ANALYSIS SYSTEM FOR GEOSTATION COMMUNICATION SATELLITE (통신위성의 임무 및 위성체 동역학 해석 시스템 개발)

  • 공현철;김방엽;김정아;윤진원
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.251-260
    • /
    • 1998
  • We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system, can be applied to a general communication satellite as well as a specific communication satellite, i. e. Koreasat I,II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface(GUI) makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I,II which are being operated as geostationary communication satellites to verify the system performance.

  • PDF

Development of a Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템 개발)

  • Seo, Mun-Seok;Heo, Geon-Su;Hong, Dae-Geon;Lee, Chun-Ho;Choe, Pil-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1678-1683
    • /
    • 2001
  • The mobility of tracked vehicles is mainly influenced by the interaction between tracks and soil, so that the characteristics of their interactions are quite important fur the tracked vehicle study. In particular, the track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to prevent the peal-off of tracks from the road-wheels, the Dynamic Track Tensioning System (DTTS) which maintains the optimum track tension throughout the maneuver is required. It consists of track tension monitoring system, track tension controller and hydraulic system. In this paper, a dynamic track tensioning system is developed for tracked vehicles which are subject to various maneuvering tasks. The track tension is estimated based on the idler assembly model. Using the monitored track tension and con sidering the highly nonlinear hydraulic units, fuzzy logic controllers are designed in order to control the track tension. The track tensioning performance of the proposed DTTS is verified through the simulation of the Multi -body Dynamics tool.