• Title/Summary/Keyword: Multi-Behavior Analysis

Search Result 987, Processing Time 0.029 seconds

Multi-point sheet forming using elastomer (탄소중합체를 이용한 다점 박판 성형)

  • Park Jong-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.21-28
    • /
    • 2003
  • Recently, instead of a matched die forming method requiring a high cost and long deliverly ten a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. As this multi-point dieless forming method has some disadvantage of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with elastomer forming was suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of a rubber and foam.

  • PDF

Implementation of the Classification system for Dental Behavior using Multi-Axial Classification System (다축분류체계를 이용한 치과용 의료행위 분류체계 구축)

  • Ahn, S.H.;Chun, M.C.;Kim, M.S.;Hong, J.Y.;Kim, K.T.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.255-256
    • /
    • 1998
  • In this paper, we propose the multi-axial classification system using parallel coding method that is systemic and flexible properties for representing dental clinical behavior. The methodology and organization of this thesis as follows. First, an analysis of other classification systems. Second, the domain of medical behavior and axises using selected elements was were determined. Third, the new code system is constructed of these common factors in properties of prediction of hierarchy, brevity, simplicity, flexibility and mnemonic usage. Finally, the framework of classification system for dental was made using multi-axial code system. The result of the this study, the eight bases axis of multi-axial code system is composed and can be basic information of research for construction of classification system of all medical domain.

  • PDF

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

Developing a Method to Define Mountain Search Priority Areas Based on Behavioral Characteristics of Missing Persons

  • Yoo, Ho Jin;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.293-302
    • /
    • 2019
  • In mountain accident events, it is important for the search team commander to determine the search area in order to secure the Golden Time. Within this period, assistance and treatment to the concerned individual will most likely prevent further injuries and harm. This paper proposes a method to determine the search priority area based on missing persons behavior and missing persons incidents statistics. GIS (Geographic Information System) and MCDM (Multi Criteria Decision Making) are integrated by applying WLC (Weighted Linear Combination) techniques. Missing persons were classified into five types, and their behavioral characteristics were analyzed to extract seven geographic analysis factors. Next, index values were set up for each missing person and element according to the behavioral characteristics, and the raster data generated by multiplying the weight of each element are superimposed to define models to select search priority areas, where each weight is calculated from the AHP (Analytical Hierarchy Process) through a pairwise comparison method obtained from search operation experts. Finally, the model generated in this study was applied to a missing person case through a virtual missing scenario, the priority area was selected, and the behavioral characteristics and topographical characteristics of the missing persons were compared with the selected area. The resulting analysis results were verified by mountain rescue experts as 'appropriate' in terms of the behavior analysis, analysis factor extraction, experimental process, and results for the missing persons.

Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester (자주식 시금치 수확장치에 적용된 유압시스템의 잉여유량 분석)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2022
  • This study dealt with a self-propelled spinach harvester, which is capable of carrying out sequential harvesting work. This study aimed to find the cause of the harvester's occasional performance deterioration, which occurs in the process of simplifying the hydraulic circuit, using a multi-domain analysis model. The study was carried out in the following manner. First, a hydraulic system analysis model, which combines linear motion, rotary motion, hydrodynamic behavior, and an electrical signal, was developed through SimulationX software, specialized in multi-domain analysis. Second, a scenario for single behavior and coupled behavior was set out on an actuator basis. Third, the flow rate of the hydraulic system, which is not required for the movement of the actuator, was quantitatively analyzed. The results showed that a change in oil temperature was the cause of the harvester's occasional performance deterioration. And the higher the oil temperature, the more serious the performance deterioration, especially as the number of actuators operated simultaneously was small.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

A Numerical Study on the Shock Behavior of Multi-layered Panels (다층 패널의 피탄충격거동에 관한 수치해석적 연구)

  • Park, Chan-Young;Yang, Hong-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je;Koo, Man-Hoi;Joo, Jae-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.986-992
    • /
    • 2011
  • In this paper, the characteristics of shock behavior of multi-layered panels under impact were studied. The panels consist of four different lightweight materials including al, al-foam, rubber and FRP in order to enhance their shock energy absorption. A commercial code, Ls-dyna was used to build the numerical model and study shock behavior based on the analysis of shock response spectrum and peak response acceleration. The reliability of the numerical model was estimated by its comparison with the experimental results acquired under the same impact conditions.

The Process of Determining of Pro-Social Tourism Behavior Intention according to the Perception of the Risk of COVID-19 : Utilizing the Norm Activation Model (코로나19 위험인식에 따른 친사회적 관광행동의도 결정과정 : 규범 활성화 모델을 활용하여)

  • Jeon, Chang-Young;Song, Woon-Gang;Yang, Hee-Won
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.2
    • /
    • pp.145-159
    • /
    • 2021
  • Purpose - The purpose of this study is to identify the preceding factors that form pro-social tourism behavior intent in a pendemic situation and to present theoretical and practical implications for the role of individuals for a safe tourism environment. Design/methodology/approach - This study conducted an analysis by collecting 420 valid questionnaires targeting citizens who have lived in Korea continuously for more than one year. For the analysis, a confirmatory factor analysis (CFA) and a structural equation model (SEM) were used, and a multi-group confirmatory factor analysis (MCFA) and a multi-group structural equation model (MSEM) were used to verify the difference by age group. Findings - First, cognitive and affective risk perception for Covid-19 had a significant (+) effect on the ascription of responsibility to tourists, and affective risk perception and ascription of responsibility had a significant (+) effect on personal norms. Second, personal norms have been shown to have a significant (+) influence on prosocial tourism behavior intention, and prosocial tourism behavior intention has a significant (+) influence on WTP on safety tourism. Research implications or Originality - Tourism behavior in a pendemic situation can affect the spread of infection. In this respect, this study attempted to confirm how moral norms affect pro-social tourism behavior from a personal point of view. In addition, we tried to present practical implications by identifying the impact of personal norms on willing to pay for a safe tourism environment.

Real-time Dog Behavior Analysis and Care System Using Sensor Module and Artificial Neural Network (센서 모듈과 인공신경망을 활용한 실시간 반려견 행동 분석 및 케어 시스템)

  • Hee Rae Lee;Seon Gyeong Kim;Hyung Gyu Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.35-42
    • /
    • 2024
  • In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.

A Back-Analysis of Tunnels in Multi-Layered Underground Structures (다층구조계내 터널 거동의 역해석)

  • 전병승;이상도;나경웅;김문겸
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 1994
  • This study consists of two procedures on back analysis and forward analysis which is a basic tool of the former. For a safe and economical construction of underground structures, it is required to identify the structural parameters and analyze the structural behavior as exactly as possible. In this paper, a boundary element method to analyze the behavior of multi-alyered underground structures is studied, in which body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are considered. That is, each layer is discritized into subregions using infinite fundamental solutions, and terms of body forces and initial stresses are transformed into boundary integral where the applied direct integral method is used. And the system of equations containing body forces and initial stresses are composed, then the method to solve unknowns is used with applying compatibility and equilibrium conditions between interfaces. As well, the direct search method is applied in back analysis problems. By Powell's method as a technique to search unknown parameters, assuming displacements calculated from boundary element analysis as in-situ displacements, elastic moduli and initial stresses are presumed. As consequences of this study, the results of boundary element analysis of the behavior of multilayered structure considering body forces and initial stresses are agreed with those of finite element analysis. And results of back analysis of elastic moduli and initial stresses in each layers are agreed with exact values with a little difference. Therefore, it is known that this study can be efficiently applied for analyzing the behavior of underground structures including back analysis problems.

  • PDF