• Title/Summary/Keyword: Multi-Application

Search Result 3,604, Processing Time 0.036 seconds

Reality of Housing for Multi-Cultural Families from the Perspectives of Social Constructionism and Critical Social Constructionism (사회구성주의와 비판적 사회구성주의 관점으로 본 다문화가정 주거의 실재)

  • Hong, Hyung Ock
    • Human Ecology Research
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2014
  • The purpose of this study was to review the conceptual framework of social constructionism and critical social constructionism in the research area of multi-cultural family homes, using a literature review. Fopp argued that social constructionism had an objectivation problem that only considered the actor side as a policy object; therefore he suggested a weaker social constructionist perspective with moderate relativism and the application of feminist epistemology to marginal life for maximizing objectivity. This article explores a conceptual framework for studying the reality of housing of multi-cultural families in Korea in the light of constructionist ideas and presents a review of empirical positivist data to support the framework. Based on results, using the social constructionist framework, five contexts (structural, institutional, organizational, operational, and intersubjective) were reviewed and ideas were suggested to develop an appropriate future situation for multi-cultural family homes. For a weaker social constructionist framework, three National Survey of Multi-Cultural Family Homes data sets were reviewed to determine the real condition of multi-cultural family homes. Further, from a feminist perspective, the empirical data of marginalized multi-cultural family homes were reviewed from the perspectives of gender inequality of decision making, cultural adaptation, and differentiation in housing related areas. In conclusion, two perspectives were useful for understanding multi-cultural family housing in Korea but must be compensated with substantial empirical data for a holistic approach.

A Computational Interactive Approach to Multi-agent Motion Planning

  • Ji, Sang-Hoon;Choi, Jeong-Sik;Lee, Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.295-306
    • /
    • 2007
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agents. Most of the past research results are thus based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents, for the case of general shaped paths in agent movement. First, to reduce the computation time, an extended collision map is developed and utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, a priority for multi-agents is considered for successive and interactive modifications of the agent movements with lower priority. Various solutions using speed reduction and time delay of the relevant agents are investigated and compared in terms of the computation time. A practical implementation is finally provided for three different types of agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

SAR Remote Sensing Technology Development and Application in China

  • Jing, Li
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.448-453
    • /
    • 2002
  • Remote sensing technology is one of the most powerful tools for human to know the nature and their living environment. However, before microwave remote sensing was developed and applied, remote sensing application was limited strongly by weather and time. Microwave remote sensing technology solves the problem. It makes us to have the capability to acquire information at all time of the day and under all weather condition, and make remote sensing technology be used in more wider area. Microwave remote sensing system include mainly Synthetic Aperture Radar (SAR), Microwave Radiometer, Microwave Scatterometer, and Altimeter (ALT). As SAR can acquire image whose spatial resolution is similar with visible and infrared image, it is paying much attention to and playing a more and more important role in earth observation. In recent year, the development of new SAR technology (multi-band and multi-polarization technology, InSAR technology, D-InSAR technology, and so on) makes SAR remote sensing go to an new stage, and its application area become more and more widely. The first Synthetic Aperture Radar (SAR) in the world appeared in 1960. After that, SAR and its application all developed very fast. Some radar satellites launched and run (include Seasat-A in 1978, ERS-1 in 1991, JERS-1 in 1992, Radarsat in 1995, and so on) promote SAR research and application in world greatly. China began to develop its SAR sensor and research SAR application in 1970s. After more than 30 years' research, it get some important development in sensor development data processing method, and application. Some operational systems have been used and play an important role. This paper will introduce the development of SAR technology and its application in China.

  • PDF

Multi-channel analyzer based on a novel pulse fitting analysis method

  • Wang, Qingshan;Zhang, Xiongjie;Meng, Xiangting;Wang, Bao;Wang, Dongyang;Zhou, Pengfei;Wang, Renbo;Tang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2023-2030
    • /
    • 2022
  • A novel pulse fitting analysis (PFA) method is presented for the acquisition of nuclear spectra. The charging process of the feedback capacitor in the resistive feedback charge-sensitive preamplifier is equivalent to the impulsive pulse, and its impulse response function (IRF) can be obtained by non-linear fitting of the falling edge of the nuclear pulse. The integral of the IRF excluding the baseline represents the energy deposition of the particles in the detector. In addition, since the non-linear fitting process in PFA method is difficult to achieve in the conventional architecture of spectroscopy system, a new multi-channel analyzer (MCA) based on Zynq SoC is proposed, which transmits all the data of nuclear pulses from the programmable logic (PL) to the processing system (PS) by high-speed AXI-Stream in order to implement PFA method with precision. The linearity of new MCA has been tested. The spectrum of 137Cs was obtained using LaBr3(Ce) scintillator detector, and was compared with commercial MCA by ORTEC. The results of tests indicate that the MCA based on PFA method has the same performance as the commercial MCA based on pulse height analysis (PHA) method and excellent linearity for γ-rays with different energies, which infers that PFA method is an effective and promising method for the acquisition of spectra. Furthermore, it provides a new solution for nuclear pulse processing algorithms involving regression and iterative processes.