• Title/Summary/Keyword: Multi extrusion

Search Result 103, Processing Time 0.02 seconds

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.

Inversion Research on the shortening and Sliding of Drape Zones between Chinese Continent Blocks by GPS Data

  • Zhixing, Du;Fanlin, Yang;Xinzhou, Wang;Xiushan, Lu;Huizhan, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.401-405
    • /
    • 2006
  • A uniform velocity field of crust can be obtained by cumulative multi-year GPS data. Then the shortening and sliding of drape zones between Chinese Continent Blocks can be researched through the velocity field and dynamics meaning is also analyzed. A model of movement and strain is created to extract displacing and rotating information of blocks in this paper. On the basis of it, the shortening vectors and sliding states of drape zones between blocks can be obtained by the model of level center of gravity moving velocity vectors between neighboring blocks. Some result show as follows. India plate jostles greatly toward north, so a complicated movement situation is formed for 14 sub-blocks. And self-deformations of inner tectosomes can be greatly reflected according to the characteristics of drape zones between tectosomes. The extrusion deformation exists between Himalaya and Qiangtang blocks. Its contraction ratio is about 20.1 $mm.a^{-1}$. However, it only is $mm.a^{-1}$ between Tarim and Zhungar. The deformation characteristics and contraction ratio of other drape zones are obviously different with the former. The movement characteristics of contraction, shear, dislocation, etc. are showed in these zones. The average contraction ratio is about 5.0 $mm.a^{-1}$. The whole trend in the west continent has a big movement toward north, and in the east continent has a small movement toward south or southeast. The strain of west continent is far bigger than that of east, and the strain of southwest is bigger than that of the southeast. It is whole showed that India plate jostles toward north-east and the south-north zone has cutting and absorbing phenomena. The total characteristics and present-day trends of deformation of inland drape zones are basically described by the sinistrorse dislocation in south-north zone and Arjin fracture, the sinistrorse shear between south china and north china, etc.

  • PDF

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF