• Title/Summary/Keyword: Multi cycle test

Search Result 95, Processing Time 0.025 seconds

A Study on the Optimum Design of Exhaust System for 4 Cylinder Diesel Engine (4실린더 디젤기관 배기계의 최적설계에 관한연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.405-411
    • /
    • 1999
  • Dynamic effect of gas in exhaust manifold influences the volumetric efficiency of the engine. Especially in case of multi-cylinder engine the shape of exhaust manifold is important for the opti-mum design of exhasut manifold complicated. In this paper the effects of exhaust manifold systems on volumetric efficiency were investigated for the 4 cylinder 4 stroke-cycle diesel engine. Volumetric efficiency was calculated by the method of characteristics. The calculation results coincided well the test results. This study showed that the appropriate position and diameter of exhaust manifold branch are important factors in increasing volumetric efficiency and decreasing pumping loss.

  • PDF

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hye-Sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

A Study on The Degradation Characteristics of MLCCs SAC305 Lead-Free Solder Joints and Growth IMCs by Thermal Shock Test (열충격 시험을 통한 MLCCs SAC305 무연 솔더 접합부의 IMCs 성장과 접합특성 저하에 관한 연구)

  • Jung, Sang-Won;Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.152-158
    • /
    • 2016
  • The bonding characteristics of MLCCs (multi layer ceramic capacitor, C1608) lead-free solder (SAC305) joints were evaluated through thermal shock test ($-40^{\circ}C{\sim}125^{\circ}C$, total 1,800 cycle). After the test, IMCs( intermetallic compounds) growth and cracks were verified, also shear strengths were measured for degradation of solder joints. In addition, The thermal stress distributions at solder joints were analyzed to compare the solder joints changes before and after according to thermal shock test by FEA (finite elements analysis). We considered the effects of IMCs growth at solder joints. As results, the bonding characteristics degradation was occurred according to initial crack, crack propagations and thermal stress concentration at solder-IMCs interface, when the IMCs grown to solder inside.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.

A Study on Microstructure and Mechanical Properties of IF Steel Cube Fabricated by Multi-Axial Diagonal Forging Ver.1 and Ver.2 Processes (다축대각단조(MADF) Ver.1 및 Ver.2 공정으로 가공한 IF Steel의 미세조직 및 기계적 성질에 대한 연구)

  • Jeong, D.H.;Jo, Y.Y.;Kwon, S.C.;Kim, S.T.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.306-310
    • /
    • 2021
  • In this study, IF steel, which has a body-centered cubic (BCC) crystal structure, was fabricated as a 25 mm-long cube, and then processed for one cycle without intermediate heat treatment by applying MADF Ver.1 and Ver.2 processes. MADF processing was performed with graphite lubrication for each pass at room temperature. The development of the microstructure and texture was analyzed and compared by the location of the specimen using EBSD measurements of the IF steel. Vickers hardness test and miniature tensile test were also performed to analyze the mechanical properties. The coarse grain size of 742.6 ㎛ of the as-received IF steel was refined to a grain size of 53.0 ㎛ after one cycle of MADF Ver.1 processing and 27.0 ㎛ after MADF Ver.2 processing. Vicker's hardness of the as-received IF steel at 94 Hv was increased to 185.6 Hv and 191.2 Hv after one cycle of MADF Ver.1 and Ver.2 processing, respectively.

Development of Air Foil Bearing for High Speed Generator (고속 발전기용 Air Foil Bearing 개발)

  • 염병용;박희용;백기영;이영섭;김명섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.349-353
    • /
    • 2001
  • An air foil bearing is developed for the high speed generator. The bearing is type of multi-leaf and is stable on 60,000RPM. The vibration level is 12um(p-p) and the highest temperature level is below 100$^{\circ}C$. The dynamic parameter of air foil bearing is acquired by experimental method using exciter. The air foil bearing is also good condition at test of real generator and load condition. The condition of foil is very good after 3,000cycle start-stop test. Therefore the air foil bearing is ideal for high speed, light weight and modem turbo-machinery.

  • PDF

Repeatability of a Multi-segment Foot Model with a 15-Marker Set in Normal Children

  • Kim, Eo Jin;Shin, Hyuk Soo;Lee, Jae Hee;Kyung, Min Gyu;Yoo, Hyo Jeong;Yoo, Won Joon;Lee, Dong Yeon
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.484-490
    • /
    • 2018
  • Background: The use of three-dimensional multi-segment foot models (3D MFMs) is increasing since they have superior ability to illustrate the effect of foot and ankle pathologies on intersegmental motion of the foot compared to single-segment foot model gait analysis. However, validation of the repeatability of the 3D MFMs is important for their clinical use. Although many MFMs have been validated in normal adults, research on MFM repeatability in children is lacking. The purpose of this study is to validate the intrasession, intersession, and interrater repeatability of an MFM with a 15-marker set (DuPont foot model) in healthy children. Methods: The study included 20 feet of 20 healthy children (10 boys and 10 girls). We divided the participants into two groups of 10 each. One group was tested by the same operator in each test (intersession analysis), while the other group was tested by a different operator in each test (interrater analysis). The multiple correlation coefficient (CMC) and intraclass correlation coefficient (ICC) were calculated to assess repeatability. The difference between the two sessions of each group was assessed at each time point of gait cycle. Results: The intrasession CMC and ICC values of all parameters showed excellent or very good repeatability. The intersession CMC of many parameters showed good or better repeatability. Interrater CMC and ICC values were generally lower for all parameters than intrasession and intersession. The mean gaps of all parameters were generally similar to those of the previous study. Conclusions: We demonstrated that 3D MFM using a 15-marker set had high intrasession, intersession, and interrater repeatability in the assessment of foot motion in healthy children but recommend some caution in interpreting the hindfoot parameters.

Life Cycle Cost Estimation for Jangbogo-II Submarines based on Modeling and Simulation Methodologies (M&S기법을 활용한 장보고 II급 잠수함 수명주기비용 추정)

  • Ahn, Jae-Kyoung;Choi, Bong-Wan;Lee, Yong-Kyu
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2010
  • With the development of science and technology, modern submarines are equipped with high technology devices and multi-functioned precise armaments, consequently, acquisition cost as well as maintenance cost of the submarines are getting higher and higher. However, tight defense budget forces navy to significantly reduce military operating and maintenance costs. In this study, the maintenance and operating costs of submarine Jangbogo-II are estimated through M&S (Modeling and simulation) methodologies in order to reasonably and consistently work out the requirement verification system of Jangbogo-II. The maintenance and operating costs of Jangbogo-II along the next 25 years are estimated as 312.65 billion won via engineering analysis methods while 312.69 billion won from PRICE Model, which shows only 0.04 billion won differences as a whole. This study is expected to be able to provide meaningful decision making data for not only short and/or mid term operating planning but military budgeting.

A Study of the High Reliability in Plastic BGA Solder Joints (플라스틱 BGA 솔더접합부의 고신뢰성에 관한 연구)

  • Kim, Kyung-Seob;Shin, Young-Eui;Lee, Hyuk
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1999
  • The increase in high speed, multi-function and high I/O pin semiconductor devices highly demands high pin count, very thin, and high density packages. BGA is one of the solutions, but the package has demerits in package reliability, surface mounting problems due to the PCB warpage and solder joint crack related with TCE mismatch between the materials. On this study to verify the thermal fatigue lifetime of the solder joint FEM and experiments were performed after surface mounting BGA with different solder composition and reliability conditions. FEM showed optimum composition of Ag3.2-Sn96.5 and under the composition minimum creep deformation of the solder joint was calculated, and the thermal fatigue lifetime was improved. In view of temperature cycle condition, the conditions of $-65^{\circ}C$to $150^{\circ}C$ showed minimum lifetime and t was 1/3 of $0^{\circ}C$ to $125^{\circ}C$ condition. Test board was prepared and solder joint crack was verified. Until 1000cycle on soder joint crack was observed.

  • PDF

Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성)

  • Song Rak-Hyun;Song Keun-Suk
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.