• Title/Summary/Keyword: Multi core

Search Result 1,178, Processing Time 0.029 seconds

CORE DESIGN CONCEPTS FOR HIGH PERFORMANCE LIGHT WATER REACTORS

  • Schulenberg, T.;Starflinger, J.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modem fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with $380^{\circ}C$ core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around $500^{\circ}C$, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors.

A Study on the Scalability of Multi-core-PC Cluster for Seismic Design of Reinforced-Concrete Structures based on Genetic Algorithm (유전알고리즘 기반 콘크리트 구조물의 최적화 설계를 위한 멀티코어 퍼스널 컴퓨터 클러스터의 확장 가능성 연구)

  • Park, Keunhyoung;Choi, Se Woon;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.275-281
    • /
    • 2013
  • In this paper, determination of the scalability of the cluster composed common personal computer was performed when optimization of reinforced concrete structure using genetic algorithm. The goal of this research is watching the potential of multi-core-PC cluster for optimization of seismic design of reinforced-concrete structures. By increasing the number of core-processer of cluster, decreasing of computation time per each generation of genetic algorithm was observed. After classifying the components in singular personal computer, the estimation of the expected bottle-neck phenomenon and comparison with wall-clock time and Amdahl's law equation was performed. So we could obseved the scalability of the cluster appear complex tendency. For separating the bottle-neck phenomenon of physical and algorithm, the different size of population was selected for genetic algorithm cases. When using 64 core-processor, the efficiency of cluster is low as 31.2% compared with Amdahl's law efficiency.

A patent analysis method for identifying core technologies: Data mining and multi-criteria decision making approach (핵심 기술 파악을 위한 특허 분석 방법: 데이터 마이닝 및 다기준 의사결정 접근법)

  • Kim, Chul-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.213-220
    • /
    • 2014
  • This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.

Analysis method of application effects of single and multi-core processors in automobile integrated ECU (차량 통합ECU에서 싱글 및 멀티코어 프로세서 효과 분석 방안)

  • Lim, Chan-Woo;Ju, Hyo-Jae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.271-274
    • /
    • 2017
  • 통합 ECU를 구현할 시, 구현단계 이전에 어떤 코어를 적용 시킬지를 판단하여 추후 발생할 수 있는 비용, 성능, 소요 시간 등의 문제점을 미리 대비할 수 있는 방안이 필요하다. 따라서 본 논문에서는 차량 통합ECU에서 싱글코어와 멀티코어 프로세서 중 어떤 프로세서를 적용하는 것이 효율적인 것인지 판단하는 연구를 진행했다. 통합 ECU의 기능이 결정된 경우, 구현이전의 설계 단계에서 기능적 요구 사항들을 고려하여 SW Task를 HW 모델에 적용했을 때의 효과를 분석했다. 분석 된 결과를 토대로 통합 ECU 모델의 싱글 및 멀티 코어 방식에 따른 성능을 비교했다. 본 논문에서 제안한 분석 방안을 적용하면 구현 단계 이전에 통합 ECU에 필요한 프로세서의 성능을 파악할 수 있다. 또한, 통합 ECU 구현 비용 및 개발 소요 시간을 줄일 수 있는 효과를 불러올 수 있을 것으로 예상한다.

  • PDF

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Real-time Implementation of Dolby Pro Logic Decoder Using ARM-7 Core (ARM-7 코어를 이용한 Dolby Pro Logic 복호기의 실시간 구현)

  • 이창우;이상근;조재문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1412-1420
    • /
    • 1999
  • In order to enhance multi-channel audio signals, Dolby Pro Logic is widely used especially for the Hi-Fi audio system, since it can provide highly stereophonic effects and a nice separation of multi-channel sound. This paper describes an implementation of Dolby Pro Logic decoder with ARM-7 core. The code is modified for the fixed point operation and optimized. For the verification of the code, the operation time and the precision are estimated thoroughly. As a result, it is verified that Dolby Pro Logic decoder can be implemented with ARM-7 core operating at 54 MHz.

  • PDF

Face Detection using Skin Color Information and Parallel Processing Method on Multi-Core (멀티코어에서 피부색상 정보와 병렬처리 방법을 이용한 얼굴 검출)

  • Kim, Hong-Hee;Lee, Jae-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.219-222
    • /
    • 2012
  • 최근 얼굴검출에 관한 연구는 FPGA를 통한 H/W설계부터 DSP, GPU, ARM Core에 효율적인 S/W 설계까지 다양하게 연구되고 있다. 본 연구에서는 Multi-Core에 효과적인 얼굴검출 방법을 제안한다. 피부색을 통한 얼굴 후보를 추출하고 그 외의 배경 이미지는 삭제하여 연산처리를 빠르게 하였다. Viola-Jones가 제안한 얼굴검출 알고리즘을 POSIX Thread를 사용하여 병렬 처리하였고 그 성능을 단일 코어와 멀티코어에서 측정하였다. 단일 코어에서는 성능의 향상이 없었으나 멀티코어에서는 약 1.8배 속도가 향상되었고 검출 성공률은 기존과 동일하였다.

Characteristics of Graphene Quantum Dot-Based Oxide Substrate for InGaN/GaN Micro-LED Structure (InGaN/GaN Micro-LED구조를 위한 그래핀 양자점 기반의 산화막 기판 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.167-171
    • /
    • 2021
  • The core-shell InGaN/GaN Multi Quantum Well-Nanowires (MQW-NWs) that were selectively grown on oxide templates with perfectly circular hole patterns were highly crystalline and were shaped as high-aspect-ratio pyramids with semi-polar facets, indicating hexagonal symmetry. The formation of the InGaN active layer was characterized at its various locations for two types of the substrates, one containing defect-free MQW-NWs with GQDs and the other containing MQW-NWs with defects by using HRTEM. The TEM of the defect-free NW showed a typical diode behavior, much larger than that of the NW with defects, resulting in stronger EL from the former device, which holds promise for the realization of high-performance nonpolar core-shell InGaN/GaN MQW-NW substrates. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

Improved Disparity Map Computation on Stereoscopic Streaming Video with Multi-core Parallel Implementation

  • Kim, Cheong Ghil;Choi, Yong Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.728-741
    • /
    • 2015
  • Stereo vision has become an important technical issue in the field of 3D imaging, machine vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is the matching process of the similarity measure for each disparity value, followed by an aggregation and optimization step. Since it requires a lot of computational power, there are significant speed-performance advantages when exploiting parallel processing available on processors. In this situation, multi-core CPU may allow many parallel programming technologies to be realized in users computing devices. This paper proposes parallel implementations for calculating disparity map using a shared memory programming and exploiting the streaming SIMD extension technology. By doing so, we can take advantage both of the hardware and software features of multi-core processor. For the performance evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their processing speeds are compared with non parallel version on stereoscopic streaming video. The experimental results show that both technologies have a significant effect on the performance and achieve great improvements on processing speed.