Acknowledgement
This study was partly supported by the National Natural Science Foundation of China (Grant No. 11772343) and the Beijing Institute of Technology Research Fund Program for Young Scholars.
References
- Z.T. Su, C.Y. Ye, F.W. Yan, Liquid-sodium Fast Breeder Reactor, Atomic Energy Press, Beijing, 1991 (in Chinese).
- T. Suzuki, T. Yoshiharu, K. Kenichi, et al., A preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor, Nucl. Eng. Technol. 47 (3) (2015) 240-252. https://doi.org/10.1016/j.net.2015.03.001
- R.B. Nicholson, J.F. Jackson, A Sensitivity Study for Fast Reactor Disassembly Calculations. ANL-7952, 1974.
- H. Niwa, A comprehensive approach of reactor safety research aiming at elimination of recriticality in CDA for commercialization of LMFBR, Prog. Nucl. Energy 32 (3/4) (1998) 621-629. https://doi.org/10.1016/S0149-1970(97)00066-8
- H.A. Bethe, J.H. Taite, An estimate of the order of magnitude of the explosion when the core of a fast reactor collapses, in: British Report UKAEA-RHM (56)/113, 1956.
- R.B. Nicholson, J.F. Jackson, VENUS-11: an LMFBR Disassembly Program, Argonne National Laboratory ANL, USA, 1972, p. 7952.
- T. Suzuki, K. Kamiyama, H. Yamano, et al., A scenario of core disruptive accident for Japan sodium-cooled fast reactor to achieve in-vessel retention, J. Nucl. Sci. Technol. 51 (4) (2014) 493-513. https://doi.org/10.1080/00223131.2013.877405
- A.M. Tentner, Severe Accident Approach e Final Report Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation, Argonne National Laboratory, Nuclear Engineering Division, 2010. http://www.osti.gov/bridge.
- M.F. Robbe, M. Lepareux, E. Treille, et al., Numerical simulation of a hypothetical core disruptive accident in a small-scale model of a nuclear reactor, Nucl. Eng. Des. 223 (2) (2003) 159-196. https://doi.org/10.1016/S0029-5493(03)00039-6
- H. Yamano, S. Kubo, Y. Shimakawa, et al., Safety design and evaluation in a large-scale Japan sodium-cooled fast reactor, in: Science and technology of nuclear installation (PT.2):614973.1-61614973.14, 2012.
- Y.W. Chang, Analysis of HCDA, Nucl. Eng. Des. 69 (1982) 345-358. https://doi.org/10.1016/0029-5493(82)90182-0
- P.H. West, N.E. Hoskin, Suggested simple test problems for examination of thin shell modelling and fluid structure coupling, in: Aldermaston Report AWRE/44/92/16, APRICOT-phase, 1980, p. 3.
- K.C. Kendall, D.J. Adnams, Experiments to Validate Structural Dynamics Code Used in Fast Reactor Safety Assessment. Science and Technology of Fast Reactor Safety, British Nuclear Energy Society, London, UK, 1986.
- M. Falgayrettes, C. Fiche, P. Granet, et al., Response of a 1/20 scale mock-up of the Superphenix breeder reactor to an HCDA loading simulation, in: Proceedings of the Seventh International Conference on Structural Mechanics in Reactor Technology, 1983, pp. 157-166. Paper E 4/1, Chicago, USA.
- R.J. Tobin, D.J. Cagliostro, D.W. Ploeger, Energetics of simulated HCDA bubble expansions: some potential attenuation mechanisms, Nucl. Eng. Des. 58 (1) (1979) 85-95. https://doi.org/10.1016/0029-5493(80)90097-7
- I.G. Cameron, B.C. Hankin, A.G.P. Warham, A. Benuzzi, A. Yerkess, The computer code SEURBNUK-2 for fast reactor explosion containment safety studies, in: Proceedings of the Fourth International Conference on Structural Mechanics in Reactor Technology, 1977. Paper B 2/1, San Francisco, USA.
- B.L. Smith, A. Yerkess, J. Adamson, Status of coupled fluid-structure dynamics code SEURBNUK, in: Proceedings of the Seventh International Conference on Structural Mechanics in Reactor Technology, 1983. Paper B 9/1, Chicago, USA.
- M. Cigarini, A. Daneri, G. Toselli, Applications of ASTARTE-4 code to explosive models with complex internal structure using the rezoning facility, in: Proceedings of the Seventh International Conference on Structural Mechanics in Reactor Technology, 1983. Paper B 9/3, Chicago, USA.
- J.L. Graveleau, P. Louvet, Calculation of fluid-structure interaction for reactor safety with the CASSIOPEE code, in: Proceedings of the Fifth International Conference on Structural Mechanics in Reactor Technology, 1979. Paper B 1/7, Berlin, Germany.
- Y. Blanchet, P. Obry, J. Louvet, Treatment of fluid-structure interaction with the SIRIUS computer code, in: Proceedings of the Sixth International Conference on Structural Mechanics in Reactor Technology, 1981. Paper B 8/8, Paris, France.
- M. Lepareux, H. Bung, A. Combescure, J. Aguilar, J.F. Flober, Analysis of an HCDA in a fast reactor with a multiphase and multicomponent behavior law, in: Proceedings of the 12th International Conference on Structural Mechanics in Reactor Integrity, 1993, pp. 197-202. Paper E 7/2, Stuttgart, Germany, August.
- Y. Cariou, J.P. Pirus, C. Avallet, LMR large accident analysis method, in: Proceedings of the 14th International Conference on Structural Mechanics in Reactor Technology, 1997, pp. 395-402. Paper P 3/7, Lyon, France, August.
- M.F. Robbe, M. Lepareux, E. Treille, Estimation of the mechanical effects of a core disruptive accident on a LMFBR, in: International Conference on Nuclear Engineering, Nice, Acropolis (France), 2001, pp. 8-12. April.
- M.F. Robbe, M. Lepareux, E. Treille, et al., Numerical simulation of an explosion in a simple scale model of a nuclear reactor, Comput. Assist. Mech. Eng. Sci. 9 (4) (2002) 489-517.
- M.F. Robbe, M. Lepareux, Y. Cariou, Numerical interpretation of the MARA 8 experiment simulating a hypothetical core disruptive accident, Nucl. Eng. Des. 220 (2) (2003) 119-158. https://doi.org/10.1016/S0029-5493(02)00283-2
- M.F. Robbe, M. Lepareux, E. Seinturier, Computation of a core disruptive accident in the MARS mock-up, Nucl. Eng. Des. 235 (13) (2005) 1403-1440. https://doi.org/10.1016/j.nucengdes.2004.12.006
- V. Faucher, P. Galon, A. Beccantini, et al., Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale, in: International Conference on Supercomputing in Nuclear Applications, Monte Carlo, 2013.
- J.L. Yang, X.J. Cai, C.H. Wu, Experimental and FEM study of windshield subjected to high speed bird impact, Acta Mech. Sin. 19 (6) (2003) 543-550. https://doi.org/10.1007/BF02484547
- H.C. Huang, et al., Thermal Technology Dictionary, vol. 467, Shanghai Lexicographical Publishing House, 1996.
- L.E. Felton, C.H. Raeder, D.B. Knorr, The properties of tin-bismuth alloy solders, JOM (J. Occup. Med.) 45 (7) (1993) 28-32. https://doi.org/10.1007/bf03222377
- D.J. Benson, A mixture theory for contact in multi-material Eulerian formulations, Comput. Methods Appl. Mech. Eng. 140 (1) (1997).
- G. Barras, M. Souli, N. Aquelet, et al., Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena, Ocean Eng. 41 (2012) 53-66. https://doi.org/10.1016/j.oceaneng.2011.12.015
- M. Souli, A. Ouahsine, L. Lewin, ALE formulation for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng. 190 (2000) 659-675. https://doi.org/10.1016/S0045-7825(99)00432-6
- H. Zhao, et al., LS-DYNA Dynamic Analysis Guide, Ordnance Industry Press, 2003 (in Chinese).
- J.H. Ding, X.L. Jin, G.G. Li, et al., Three-dimensional cutting simulation by cutterhead of shield machine based on parallel computing, J. Syst. Simul. 19 (23) (2007), 5376-5375.
- X.J. Wang, Z. Zong, Y. Zhao, et al., A numerical study of passenger side airbag deployment based on arbitrary Lagrangian-Eulerian method, Sci. China Technol. Sci. 58 (3) (2015) 397-404. https://doi.org/10.1007/s11431-014-5758-z
- ASME Boiler & Pressure Vessel Code. II Materials, Part D. Properties, 2015.
- O.H. John, LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, 2018.
- A. Benuzzi, Comparison of different LMFBR primary containment codes applied to a benchmark problem, Nucl. Eng. Des. 100 (2) (1987) 239-249. https://doi.org/10.1016/0029-5493(87)90045-8
- China Iron and Steel Industry Association, GB/T 5216-2014 Structural Steels with Specified Hardenability Bands, Standards Press of China, Bei Jing, 2014.