• Title/Summary/Keyword: Multi component fuel

Search Result 43, Processing Time 0.02 seconds

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Numerical research for Gate Type Waste Incinerators In Environment energy facilities (환경에너지시설내 화격자식 소각로 수치해석 연구)

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • This study is analyzed combustion phenomena based on the environmental energy facility incinerator. It is assumed that combustible components of waste are composed of carbon and hydrogen, and the combustion process of fuel is by setting as multi-component / multistage reaction. As the combustion chamber is burned, the high temperature environment is achieved, also the heat transfer accompanied by the turbulent flow and the generation of NOx, a pollutant, are interpreted to predict the thermal and fluid characteristics and pollution emissions of the grate incinerator. As the result of internal flow analysis, the slow flow around the ash chute and the mixing effect due to the complicated turbulence around the combustion chamber were predicted to show excellent performance. It is shown to the internal average temperature was about $1024^{\circ}C$, around the about $1000^{\circ}C$ homogeneous temperature distribution. Due to the sudden temperature decrease in the boiler, the flue gas temperature at the outlet was estimated to be about $220^{\circ}C$.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

Prediction of the Dynamic Adsorption Behaviors of the Uranium and Cobalt Ions in a Fixed Bed by Surface Modified Activated Carbon (표면개질 활성탄을 이용한 고정층에서 우라늄 및 코발트 이온의 동적 흡착거동 모사)

  • Geun-IL Park;Jung-Won Lee;Kee-Chan Song;In-Tae Kim;Kwang-Wook Kim;Myung-Seung Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.81-92
    • /
    • 2003
  • In order to predict the dynamic behaviors of uranium and cobalt in a fixed bed at various influent pH values of liquid waste, the adsorption system is regarded as a multi-component adsorption between each ionic species in the solution. Langmuir isotherm parameters of each species were extracted by incorporating equilibrium data with the solution chemistry of the uranium and cobalt using IAST. Prediction results were in good agreement with the experimental data, except for a high concentration and pH. Although there was some limitations in predicting the cobalt adsorption, this method may be useful in analyzing a complex adsorption system where various kinds of ionic species exist in a solution.

  • PDF

A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using The CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • A steady-state and dynamic simulation program for a small multi-purpose turboshaft engine with the free power turbine was developed. In order to reduce developing cost, time and risk, a turbojet engine whose performance was well-known was used for the gas generator, and life time was improved by replacing turbine material and by using Larson-Miller curves. The component characteristic of the power turbine was derived from scaling the gas generator turbine. Equilibrium equations of mass flow rate and work were used for the steady-state performance analysis, and the Constant Flow Method(CMF) was used for the dynamic performance simulation. The step fuel scheduling was carried out for acceleration in the dynamic simulation. Through this simulation, it was found that the overshoot of the turbine inlet temperature exceeded over the compressor turbine limit temperature.

  • PDF

A Study on the Miniaturization of Angle Head Spindle Case for Cutting in Narrow Spaces (협소 공간 절삭가공용 앵글 헤드 스핀들 케이스 소형화에 대한 연구)

  • Sung, Chul Hoon;Han, Sung Gil;Kim, Sung Hoon;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.98-105
    • /
    • 2019
  • In order to improve the fuel economy and dynamic behavior of automobiles, the weight reduction tendency of automobile parts is obvious. Also, in order to maximize assembly and maintenance convenience, various parts are integrated and modularized. Multi-piece methods require many manufacturing processes and become a factor of lowering the strength of parts. It is advantageous to overcome the disadvantages by integrally manufacturing to reduce the processing steps and ensure the strength of the parts. However, when it is necessary to process in a narrow space inside the part, it is impossible to process with the existing spindle. The angle head spindle is only a component of a machine tool, but it is a core part that requires high technology and is highly utilizable in products requiring high precision machining. Therefore, various and continuous studies needs for angle head spindles in areas such as vibration absorption, operational safety, excellent dimensional stability, and strength. In this paper, we propose an optimal design for angle head spindle by performing structural analysis and shape optimization for angle head spindle gear and case.

Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process (압력 순환 흡착과 막 분리공정을 이용한 다성분 기체의 분리공정 조업 최적화 및 경제성 평가)

  • Kim, Hansol;Lee, Jaewook;Lee, Soobin;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • At present, carbon dioxide ($CO_2$) emission, which causes global warming, is a major issue all over the world. To reduce $CO_2$ emission directly, commercial deployment of $CO_2$ separation processes has been attempted in industrial plants, such as power plant, oil refinery and steelmaking plant. Besides, several studies have been done on indirect reduction of $CO_2$ emission from recycle of reducing gas (carbon monoxide or hydrogen containing gas) in the plants. Unlike many competing gas separation technologies, pressure swing adsorption (PSA) and membrane filtration are commercially used together or individually to separate a single component from the gas mixture. However, there are few studies on operation of sequential separation process of multi-component gas which has more than two target gas products. In this paper, process simulation model is first developed for two available configurations: $CO_2$ PSA-CO PSA-$H_2$ PSA and $CO_2$ PSA-CO PSA-$H_2$ membrane. Operation optimization and economic evaluation of the processes are also performed. As a result, feed gas contains about 14% of $H_2$ should be used as fuel than separating $H_2$, and $CO_2$ separation should be separated earlier than CO separation when feed gas contains about 30% of $CO_2$ and CO. The simulation results can help us to find an optimal process configuration and operation condition for separation of multicomponent gas with $CO_2$, CO, $H_2$ and other gases.

Evaluation of co- and Mutual Weparation for Actinide(III) and RE by a $(Zr-DEHPA)/n-dodecane-HNO_3$ Extraction System ($(Zr-DEHPA)/n-dodecane-HNO_3$ 금속함유 추출 계에 의한 악티나이드(III)및 RE의 공추출 및 상호 분리)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.123-132
    • /
    • 2007
  • This study was performed to evaluate the co- and mutual separation for Am, Cm and RE elements from the simulated multi-component solution equivalent to real HLW level by a Zr-DEHPA(di-(2-ethylhexyl) phosphoric acid containing Zirconium)/$NDD(n-dodecane)-HNO_3$ extraction system. Zr-DEHPA was self-synthesized and the optimal condition of (15g/L Zr-1M DEHPA)/NDD-1M $HNO_3$ was selected taking into consideration of prevention of the third phase, and effects of concentration of DEHPA, nitric acid and impregnant amount of Zr on the co-extraction of Am, Cm and RE. In that condition, the extraction yields were 81% (Am), 85% (Cm), more than 80% (RE elements), 98% (Mo), 85% (Fe), 98% (U), 73% (Np), and less than 5% (other elements) so that the system developed for the co-extraction of Am-Cm/RE was proved to be available. For that, however, U, Np, Mo and Fe was elucidated to have to be removed in advance, and Zr inducing the third phase formation was found to be practically excluded. The co-extracted Am-Cm/RE were sequentially separated in an order of Am-Cm (stripping agent : 0.05 M DTPA-1M Lactic acid of pH 3.6)${\rightarrow}RE$ (stripping agent : 5M $HNO_3$), and then their separation factors were evaluated. At above conditions, Am of 65.4%, Cm of 63.9%, RE (except for Y) of more than 85% were stripped.

  • PDF

Evaluation of co- and Sequential Separation for Tc, Np and U by a $(TBP-TOA)/n-dodecane-HNO_3$ Extraction System ($(TBP-TOA)/n-dodecane-HNO_3$ 추출 계에 의한 Tc, Np, U의 공추출 및 순차분리 평가)

  • Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Yang, Han-Beom;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.133-143
    • /
    • 2007
  • This study was performed to evaluate the co- and sequential separation of Tc, Np and U from the simulated multi-component HLW solution by a TBP (tributyl phosphate)-TOA (tri- octyl amine)/NDD $(n-dodecane)-HNO_3$ extraction system. An optimal condition of (30% TBP-0.5% TOA)/NDD-1 M $HNO_3$ was selected by taking account of a prevention of the 3rd phase and effects of concentration of TBP, TOA and nitric acid on the co-extraction of Tc, Np and U. In that condition, the extraction yields were 81% (Tc), 85% (Np), less than 9% (Am and RE elements), about 8% (Pd), and less than 5% (other elements) so that the system developed for the co-extraction of Tc, Np and U was proved to be available. For that, however, more than 99% of Zr was found to be pre-removed. The co-extracted Tc, Np and U were sequentially separated in order of Tc(stripping agent : 5 M $HNO_3$)${\rightarrow}Np$ by reductive stripping (reductive-stripping agent : 0.1 M AHA)${\rightarrow}U$ (stripping agent : 0.01 M $HNO_3$), and then their separation factors were evaluated. At these conditions, 95% of Tc, 98% of Np and 99% of U could be recovered in each step.

  • PDF