• 제목/요약/키워드: Multi Image Orientation

검색결과 53건 처리시간 0.019초

비측정용 카메라를 이용한 Multi-Looking 카메라의 플랫폼 캘리브레이션 실험 연구 (Experiment on Camera Platform Calibration of a Multi-Looking Camera System using single Non-Metric Camera)

  • 이창노;이병길;어양담
    • 한국측량학회지
    • /
    • 제26권4호
    • /
    • pp.351-357
    • /
    • 2008
  • 항공용 Multi-looking 카메라는 1대의 사진기 몸체에 5대의 카메라를 설치하여 동시에 1장의 연직사진과 4개의 경사사진을 획득하므로, 연직방향으로 촬영된 일반 항공사진에 비해 현장에 대한 다양한 정보를 제공한다. 연직사진용 카메라에 대한 경사사진용 카메라의 기하학적 관계는6개의 외부표정요소에 의해 모델링 될 수 있으며, 그 기하학적 관계가 결정되면 경사사진에 대한 외부표정요소는 연직사진의 외부표정요소로부터 계산될 수 있다. Multi-looking 카메라에서의 연직카메라와 경사카메라의 상대적 외부표정요소를 검사하기 위하여, 실내 캘리브레이션 타깃을 설치한 후 하나의 비측정용 디지털카메라를 사용하여 세 지점에서 촬영방향 바꿔가며 14장의 사진을 취득하였다. 카메라 자체검정에 의해 카메라의 내부표정요소와 각 사진에 대한 외부표정요소가 추정되었고, 연직사진에 대한 경사사진의 상대적 외부표정요소가 각 사진에 대한 외부표정요소로부터 계산되었다. 상대적 외부표정요소 중 회전각과 투영중심점 위치에 대한 오차가 지상좌표 추정에 미치는 영향이 각각 분석되었다.

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

3차원 다중 기선을 사용만 비데오 영상 모자이크 기술 (Video Image Mosaicing Technique Using 3 Dimensional Multi Base Lines)

  • 전재춘;서용철
    • 대한원격탐사학회지
    • /
    • 제20권2호
    • /
    • pp.125-137
    • /
    • 2004
  • 하나의 기선에 작은 여러 영상을 투영하여 하나의 영상 모자이크를 생성하는 2차원 영상 모자이크 기법은 비데오 카메라가 도심지역을 이동하여 얻은 영상을 하나의 모자이크 영상을 생성할 수 없다. 본 논문에서는, 3차원 다중 기준선을 이용함으로서 3차원 공간에서 영상 모자이크를 생성시킬 수 있는 새로운 기법을 제안하였다. 제안된 방법은 각 영상 프레임마다 독립적인 기선을 가지도록 하여 3차원 공간에서 영상 모자이크를 생성 제안하는 것으로서, 독립적인 기선은 각 영상 프레임에서 추출된 광류의 지상 기준점들을 1차 방정식으로 표현한 것이다. 제안한 방법은 계층적 방법을 이용한 광류(Optical Flow)계산, 카메라 외부표정(Exterior Orientation)계산, 다중 기선(Multi-baselines)계산과 모자이크 된 영상들간의 경계를 감지 못하는 화소(Optimal Seamline Detection)의한 영상 모자이크 재생성 과정을 통해 구현되며, 실제 영상 프레임을 이용한 실험을 통해 효과적으로 3차원 공간에서 영상 모자이크 제작이 가능함을 입증하였다.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

패션제품의 윈도우 정보효과가 점포 방문의사결정에 미치는 영향 -의복쇼핑성향에 따른 집단간 차이를 중심으로- (The Impact of Window Information Effect on Consumers' Willingness to Visit a Fashion Store -Focusing on Group Differences by Clothing Shopping Orientation-)

  • 전민지;오희선;서용한
    • 한국의류학회지
    • /
    • 제30권9_10호
    • /
    • pp.1423-1433
    • /
    • 2006
  • The purpose of this study is to explore the impact of window information on consumers' willingness to visit a fashion store according to their clothing shopping orientation. The sutjects of the research are conveniently selected females over the age of 20 living in Busan. A total of 202 questionnaire are collected far data analysis. The results of this study are as follows: 1. The factor analysis to identify the clothing shopping orientation showed four factors, such as hedonic, planned, independent/loyalty, and impulsive/convenience. A cluster analysis conducted by the four factors resulted in four patterns - utilitarian shopping orientation group, impulsive/convenience shopping orientation group, hedonic shopping orientation group, independent/loyalty shopping orientation group. 2. The window information conducted by factor analysis were divided into the four levels-product information, promotion information, fashion information, and store image. 3. A one-way ANOVA analysis carried out to find the window information effects among the groups revealed that there were significant differences in the factors of promotion information, fashion information, and store image. 4. Multi-regression analysis was conducted in order to find the impact of window information on the consumers' willingness to visit a fashion store. As a result, fashion information had the most impact on utilitarian shopping group, while product information, promotion information and store image had a great impact on impulsive/convenience shopping orientation group, fashion information and store image had the most impact on hedonic shopping orientation group.

A Survey for 3D Object Detection Algorithms from Images

  • Lee, Han-Lim;Kim, Ye-ji;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제9권3호
    • /
    • pp.183-190
    • /
    • 2022
  • Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future direction in this field.

실시간 영상 지오레퍼런싱을 위한 KLT 트랙커의 속도개선 (Speeding up the KLT Tracker for Realtime Image Georeferencing)

  • 수패니 타나쏭;이임평
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.77-80
    • /
    • 2010
  • The demand for human security significantly promotes the development of surveillance applications using a multi-sensor integrated UAV system. For more sophisticated operations, the system should provide a sequence of images rectified in a ground coordinate system in realtime. This rectification requires accurate position and attitude of the camera at the time of exposure of each image, which can be estimated through an Aerial Triangulation process using the GPS/INS data and tie points between adjacent images. In this work, the KLT tracker is utilized to obtain the tie points. To satisfy the realtime requirements, we present an approach to speed up the tracker by supplying the initial guessed positions of tie points based on the exterior orientation. The experimental results show that, when the guessed positions are supplied, the KLT tracker consumed less computational time than the ordinary KLT which is more suitable to be incorporated into the realtime image georeferencing process.

  • PDF

정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘 (Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation)

  • 주재용;김민재;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.37-48
    • /
    • 2012
  • 영상정합은 동일한 장면에 대해서 서로 다른 시점, 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 얻은 영상들의 위치 관계를 대응 시켜주는 기법이다. 본 논문에서는 가시광선 영상 및 적외선 영상과 같은 다중센서 영상을 정합하기 위한 방법을 제안한다. 영상정합은 두 영상에서 특징점을 추출하고, 특징점 간의 대응 관계를 구함으로써 이루어진다. 기존의 다중센서 영상 정합을 위한 방법으로 정규상호정보를 이용하여 대응 특징점을 선별하는 방법이 제안되었다. 정규상호정보 기반의 영상정합 기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제한다. 그러나 가시광선 영상과 적외선 영상에서는 이를 보장하지 못하는 경우가 많아 대응 특징점의 정확도가 저하되기 때문에 기존의 방법은 안정적인 정합 성능을 기대하기 힘들다. 본 논문에서는 영상의 공간정보로서 기울기 방향정보를 정규상호정보와 결합함으로써, 대응 특징점의 정확도를 향상시켰으며 이를 통해 정확성 및 안정적인 영상 정합 결과를 도모하였다. 다양한 실험 결과를 통해 제안하는 방법의 효용성을 증명하였다.

Location-Based Saliency Maps from a Fully Connected Layer using Multi-Shapes

  • Kim, Hoseung;Han, Seong-Soo;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.166-179
    • /
    • 2021
  • Recently, with the development of technology, computer vision research based on the human visual system has been actively conducted. Saliency maps have been used to highlight areas that are visually interesting within the image, but they can suffer from low performance due to external factors, such as an indistinct background or light source. In this study, existing color, brightness, and contrast feature maps are subjected to multiple shape and orientation filters and then connected to a fully connected layer to determine pixel intensities within the image based on location-based weights. The proposed method demonstrates better performance in separating the background from the area of interest in terms of color and brightness in the presence of external elements and noise. Location-based weight normalization is also effective in removing pixels with high intensity that are outside of the image or in non-interest regions. Our proposed method also demonstrates that multi-filter normalization can be processed faster using parallel processing.