• Title/Summary/Keyword: Multi Ground

Search Result 1,138, Processing Time 0.023 seconds

Analysis of Individual Tree Change Using Aerial Photograph in Deforested area Before and After Road Construction (항공영상을 활용한 도로개발 전·후 산림 훼손지 개체목 분석)

  • Choi, Jae-Yong;Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Lee, Ji-Young;Choi, Won-Tae;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2018
  • Although the road construction in forest is increasing and there is a need for development ecological restoration on deforest area, no consideration has been given to individual trees in there. This study analyzed aerial photographs of deforest area before and after road construction for determining the degree of forest destruction by extracting individual trees. Study area was selected in the sites where are damaged by road construction in GongJu-si, YuSung-gu, and YeongDong-gun. The aerial photograph taken 1979 before construction is panchromatic image of 80cm in GSD (Ground Sample Distance) and other photograph taken 2016 after construction is multi-spectral image of 10cm in GSD. In order to minimize the difference of GSD, we conducted image re-sampling process for setting to same GSD for the two photographs. After that we carried out visual interpretation method for determining to change of individual tree. The result found that for GongJu-si of the number of individual tree was 1,014 in 1979 and 886 in 2016, which decreased by 128 (12.6%) and the average width of those decreased from 5.77m to 5.75m by 0.47%. In case of YoungDong-gun, the number of it was 761 in 1979 and 746 in 2016, which decreased by 2.0% and the average width of it decreased from 8.99mm to 8.90m by 1.1%. Lastly in case of YuSung-gu, the number of it was 1,578 in 1979 and 988 in 2016, which decreased by 37.4% and the average width of it decreased from 7.09m to 6.65m by 6.21%. these result imply that road construction causes destruction of forests. Since there are limitations such as errors due to researcher, it is necessary to construct a quantitative analysis method for the change of the deforest area. It is need to study the method of extracting individual tree in deforest area more accurately using high-resolution image of GSD 10cm or more as well. This study can be used as a basic data for the ecological restoration of the deforest area considering characteristics of individual tree such as height, diameter at breast height, and biomass.

Quality Characteristics of Reconstituted Multi-Grain by Extrusion Process (압출성형기법에 의해 제조한 재성형 혼합곡의 품질특성)

  • Lee, Young-Tack;Seog, Ho-Moon;Kim, Sung-Soo;Kim, Kyung-Tack;Hong, Hee-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.963-968
    • /
    • 1997
  • Cereals and legumes were ground, blended and extruded with a twin-screw extruder to form a reconstituted grain. The basic formula was as follows: brown rice 30%, barley 30%, wheat 20%, millet 5%, sorghum 5%, soybean 7%, and red bean 3%. Extrusion conditions were properly set for feed moisture content of $24{\sim}30%$, barrel temperature of $50{\sim}60^{\circ}C$, and screw speed at 250 rpm. The extruded grain was air-dried and evaluated for quality characteristics, compared with milled rice. Size and shape of the reconstituted grain were similar to short-grain milled rice. Stacking volume of the reconstituted grain was a little higher than that of milled rice, and its water absorption was more rapid. From the texture measurements, hardness of cooked reconstituted grain was slightly lower and adhesiveness was appeared to be higher.

  • PDF

Evaluation of the Accuracy of IMERG at Multiple Temporal Scales (시간 해상도 변화에 따른 IMERG 정확도 평가)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.102-114
    • /
    • 2017
  • The purpose of this study was the assessment of the accuracy of Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), a rainfall data source derived from satellite images, for evaluation of its applicability to use in ungauged or inaccessible areas. The study area was the overall area of the Korean peninsula divided into six regions. Automated Surface Observing System (ASOS) rainfall data from the Korean Meteorological Administration and IMERG satellite rainfall were used. Their average correlation coefficient was 0.46 for a 1-h temporal resolution, and it increased to 0.69 for a 24-h temporal resolution. The IMERG data quantitatively estimated less than the rainfall totals from ground gauges, and the bias decreased as the temporal resolution was decreased. The correlation coefficients of the two rainfall events, which had relatively greater rainfall amounts, were 0.68 and 0.69 for a 1-h temporal resolution. Additionally, the spatial distributions of the ASOS and IMERG data were similar to each other. The study results showed that the IMERG data were very useful in the assessment of the hydro-meteorological characteristics of ungauged or inaccessible areas. In a future study, verification of the accuracy of satellite-derived rainfall data will be performed by expanding the analysis periods and applying various statistical techniques.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

A geophysical survey result over a hydrocarbon contaminated site (물리탐사를 이용한 국내 유류오염지역 조사 사례)

  • Song Yoonho;Park Sam Gyu;Seol Soon Jn;Choi Seong-Jun;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.122-140
    • /
    • 2001
  • We have applied the geophysical survey, mainly electric and electromagnetic (EM) methods, to a test site contaminated by hydrocarbon waste disposal and local spill. The multi-frequency, moving source & receiver EM survey along with ground penetrating radar (GPR) showed a fairly good performance in detection of buried metal pipes and objects. Magnetic survey measuring vertical and horizontal gradients were so sensitive to the small metallic objects spread over the surface that it's hard to discriminate the buried pipe. We chose electrical resistivity, EM and GPR survey to examine the soil contamination. Depth slices of resistivity distribution as the results of the inversion of resistivity and EM data coincided each other and closely matched the contaminated area determined by chemical analysis of the soil samples. GPR images did not show the reflection events related with contamination plume since there are no distinct spill in this site. We inferred the contamination using the penetration depth of the GPR energy, which could be used as auxiliary information to the resistivity and EM results. We summarized the applicability of each survey methods based on this results and proposed a desirable survey scheme for the determination of hydrocarbon contaminated site.

  • PDF

A Study on Coupling Coefficient and Resonant Frquency tunable Multi-band Internal Antenna (결합계수 및 주파수 튜너블 다중대역 내장형 안테나에 관한 연구)

  • Lee, Moon-Woo;Lee, Sang-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of antenna. Novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880~960 MHz), GPS($1,575{\pm}10MHz$), DCS(1,710~1,880MHz), US-PCS(1,850~1,990 MHz), and W-CDMA(1,920~2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line antenna and PIFA(Planner Inverted F Antenna). A single shorting and feeding points are used and they are common to both antenna structures. One of two inductors which is placed at each shorting post, one inductor is for adjusts amount of coupling, and the other controlling the resonant frequency in DCS/US-PCS/WCDMA bands. The inductance range for control of input impedance is between 0nH and 6.8nH, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.15dBi, 0.73dBi and 0.29dBi. The inductance range for control of the resonant frequency is between 1640MHz and 2500MHz, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.46dBi, 0.53dBi and 0.8dBi.

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Elevation Correction of Multi-Temporal Digital Elevation Model based on Unmanned Aerial Vehicle Images over Agricultural Area (농경지 지역 무인항공기 영상 기반 시계열 수치표고모델 표고 보정)

  • Kim, Taeheon;Park, Jueon;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, we propose an approach for calibrating the elevation of a DEM (Digital Elevation Model), one of the key data in realizing unmanned aerial vehicle image-based precision agriculture. First of all, radiometric correction is performed on the orthophoto, and then ExG (Excess Green) is generated. The non-vegetation area is extracted based on the threshold value estimated by applying the Otsu method to ExG. Subsequently, the elevation of the DEM corresponding to the location of the non-vegetation area is extracted as EIFs (Elevation Invariant Features), which is data for elevation correction. The normalized Z-score is estimated based on the difference between the extracted EIFs to eliminate the outliers. Then, by constructing a linear regression model and correcting the elevation of the DEM, high-quality DEM is produced without GCPs (Ground Control Points). To verify the proposed method using a total of 10 DEMs, the maximum/minimum value, average/standard deviation before and after elevation correction were compared and analyzed. In addition, as a result of estimating the RMSE (Root Mean Square Error) by selecting the checkpoints, an average RMSE was derivsed as 0.35m. Comprehensively, it was confirmed that a high-quality DEM could be produced without GCPs.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.