• Title/Summary/Keyword: Mulgeum

Search Result 32, Processing Time 0.015 seconds

The Impact of monsoon Rainfall (Changma) on the Changes of Water Quality in the Lower Nakdong River (Mulgeum) (장마기의 강우가 낙동강 하류 (물금) 수질에 미치는 영향)

  • Park, Sung-Bae;Lee, Sang-Kyun;Chang, Kwang-Hyeon;Jeong, Kwang-Suek;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.160-171
    • /
    • 2002
  • The impact of summer monsoon on water quality of the lower Nakdong River was evaluated during the summer (June-August) in 1997. Several limnological variables were measured in the interval of $1{\sim}3$ day using an automatic monitoring system (Hydrolab $Recorder^{TM}$) to detect water quality changes caused by rainfall on onehour basis. During the monsoon period (from late June to mid July), 5 times of major rainfall events of >50 mm were recorded in the river basin. Dynamic changes of water quality were observed during the monsoon, and the first rainfall event (June$25{\sim}27$) had a significant influence on the water quality at the lower part of the river. All Parameters were largely changed due to the first rain event, and the changed level was maintained until the end of monsoon period. Nutrient concentrations and turbidity increased and values of the other parameters were declined as a result of water dilution. This rainfall event, Changma, is a meteorological phenomenon caused by the East-Asian monsoon climate. The magnitude and frequency of the rainfall during the early monsoon play an important role in change of water quality and ecosystem characteristics of large river systems.

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.