• Title/Summary/Keyword: Mukho port

Search Result 9, Processing Time 0.023 seconds

Numerical Simulation on Control of Tsunami by Resonator (I) (for Imwon and Mukho ports) (공진장치에 의한 지진해일파의 제어에 관한 수치시뮬레이션(I) (임원항과 묵호항에 대해))

  • Lee, Kwang-Ho;Jeon, Jong-Hyeok;Kim, Do-Sam;Lee, Yun-Du
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.481-495
    • /
    • 2020
  • After the resonator on the basis of the wave-filter theory was designed to control the waves with a specific frequency range surging into the harbor, the several case with the use of resonator have been reported in some part of sea, including the port of Long Beach, USA, and yacht harbor at Rome, Italy in order to control the long-period wave motion from the vessels. Recently, the utility and applicability of the resonator has been sufficiently verified in respect of the control of tsunami approximated as the solitary wave and/or the super long-period waves. However, the case with the application of tsunami in the real sea have not been reported yet. In this research, the respective case with the use of existing resonator at the port of Mukho and Imwon located in the eastern coast of South Korea were studied by using the numerical analysis through the COMCOT model adapting the reduction rate of 1983 Central East Sea tsunami and 1993 Hokkaido Southwest off tsunami. Consequently, the effectiveness of resonator against tsunami in the real sea was confirmed through the reduction rate of maximum 40~50% at the port of Mukho, and maximum 21% at the port of Imwom, respectively. In addition, it was concluded that it is necessary to study about the various case with application of different shape, arrangement, and size of resonator in order to design the optimal resonator considering the site condition.

A Study on the Location, Population Growth, and Cargo Concentration of Korean Port-Cities (한국항만도시의 입지, 인구성장과 화물집중도연구)

  • 박노경
    • Journal of Korea Port Economic Association
    • /
    • v.17 no.2
    • /
    • pp.61-87
    • /
    • 2001
  • The purpose of this paper is to analyze the location, population growth. and cargo concentration of Korean port-cities. In the location theory, Sommer (1976) and McGee (1967) models are newly introduced, as are the Rimmer (1967), Bird (1965), Hoyle (1981) models. which were already introduced in previous studies from Korea. Analysis of population growth in the Korean port-cities is conducted using data from 1966 to 1998. Rimmer and Hoyle's concentration models are used to measure cargo concentration from 1966 to 2000. The main results of this paper are as follows: First, Korean ports are concentrated on the East Sea, the Southern Sea, and the West Sea. Their locations are closely related with the hinterland. the inland city, and growth of port-cities. In considering the foreign countrys' cases, Korean port-cities are similar to the models of Bird and Hoyle. Second, the populations of Ulsan and Pohang grew at the fastest rate in 1966-1998, while the port cities in the Honam and Jeiu region grew at much lower ratios. Most port cities are located near large industrial complexes. Third the growth rates of Gwangyang, Daesan, Pohang, Pyungtaeg, and Samchunpo increased, while those of Busan. Mukho, Masan, Mogpo, Yeosu, and Sokcho declined. Of particular note, the growth rate of Busan remained negative after the late 1980s. Fourth. empirical results using the Rimmer (1967) model indicate that Gwangyang, Daesan, Pyungtag, and Pohang have shown the concentration. But the deconcentration was shown from the Busan, Mukho, Janghang, Gunsan, Mogpo, Yeosu, Masan, Sokcho. and Jeju. Fifth, the concentration of ports located in West coast region has shown the mixed results between concentration and deconcentration except the concentration of early 1970s and 1990s. The concentration of ports located in East coast region has shown the concentration before the middle of 1980s. And deconcentration after the middle of 1980s have appeared. The Southern coast region has shown the continuous deconcentration except the partial concentration of early 1986. and 1991. Planners of Korean ports should find out the factors of concentration and deconcentration of each ports and should determine factors such as investment priority level. size and scope in order to ensure the balanced development of regional ports and port-cities.

  • PDF

A Study on the Growth Prospect and Development Direction of Donghae City as Port City (항구도시로서 동해시의 성장전망과 개발방향에 관한 연구)

  • Choi, Jang-Soon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2006
  • This study deals with analysing the growth prospect and development direction of Donghae city with two international ports. To do so, it is progressed, firstly, to examine the general discovery about port since the late nineteenth century, secondly, to unfold it's theory with Mukho and Donghae port as Donghae city development element as the central figure, thirdly, to analyse Donghae city as the important place of traffic, the location of industry and the resource base in a spatial planning side.

  • PDF

A Study on the Improvement for Port Placement of Response Vessel (방제선 배치 항만의 개선 방안)

  • Jang, Duck-Jong;Kim, Dae-Jin;Kim, Woo-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.810-819
    • /
    • 2017
  • The purpose of this study is to evaluate port use and the distribution of risk factors in 15 major ports in Korea, delineating the risk of each port after classifying the ports into four risk groups based on estimated risks. The placement of response vessels is then analyzed accordingly. Based on the results, danger was estimated to be especially high in ports where large-scale petrochemical facilities are located, such as Yeosu Gwangyang ports (1.85), Ulsan port (1.33) and Daesan port (1.25). The ports showing the next highest degree of danger were Pusan (0.95) and Incheon (0.83), which have significant vessel traffic, followed by Mokpo (0.71) and Jeju (0.49), which expanded their port facilities recently and saw an increase in large vessel traffic. Next is Masan (0.44), for which many fishing permits in the vicinity. When the relative ratios of each port were graded based on the Yeosu Gwangyang Ports, which showed the highest risk values, and risk groups were classified into four levels, the highest risk groups were Yeosu Gwangyang, Ulsan, Daesan and Pusan, with Incheon, Mokpo, Jeju, and Masan following. Pyeongtaek Dangjin, Pohang, Gunsan, and Donghae Mukho were in the mid-range danger group, and the low risk groups were Samcheonpo, Okgye, and Changsungpo. Among these, all response vessel placement ports specified by current law were above the mid-range risk groups. However, we can see that ports newly included in mid-range risk group, such as Mokpo, Jeju, and Donghae Mukho, were excluded from the pollution response vessel placement system. Therefore, to prepare for marine pollution accidents these three ports should be designated as additional response vessel placement ports.

Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer- (지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로-)

  • Kwon, Yongbum;Cho, Inhee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.721-730
    • /
    • 2021
  • Maritime air pollutants around port cities have gained a great deal of attention due to their direct impacts on regional air quality. This study aims to determine the geographical properties of sea/land breezes in different areas to discover overall ranges of maritime emission dispersion. The HOTMAC-RAPTAD modeling program was used to simulate regional-scale air dispersion considering non-linear and unsteady states during the general summer period for the target areas of the Yellow Sea (Incheon Port and Pyeongtaek·Dangjin Ports), archipelago region (Mokpo Port), South and East Sea (Busan and Masan Ports) and East Sea with mountainous area (Donghae·Mukho Ports). The resulting dispersion lengths of vessel emissions into the onshore regions around the target ports shed light on portal air quality management, because vessel emissions from the Incheon, Mokpo, Busan, and Donghae·Mukho ports were transported 27-31km (Western Seoul), 21-24km (Southern Muan), 20-26km (Gimhae and Yangsan), and 22-25km (Taebeak Mountains), respectively. Therefore, the results of this study provide useful data for regional air quality management and marine air pollution mitigation to improve the sustainability of port cities.

Estimation of Phase Variance of Acoustic Signals Depending on Turbulence Strength Near the Mukho Port in the East Sea of Korea (동해 묵호항 근처에서의 난류세기인자에 따른 음향수신신호의 위상분산 추정)

  • Kim, Jung-Hun;Bok, Tae-Hoon;Paeng, Dong-Guk;Shim, Tae-Bo;Kim, Young-Kyu;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.328-335
    • /
    • 2009
  • Phase variance of the acoustic signals has to be investigated with the research of the medium, because the phase of the acoustic signals carries the information of the medium. The phase compensation of the received signals is required for the signal processing of SAS (Synthetic Aperture Sonar) and underwater communication. In this paper, the phase variance of the acoustic signals was studied depending on the micro-scale-turbulence of ocean. The turbulence strength of the locally isotropic and homogeneous turbulence was calculated, and the phase variance affected by the turbulence strength was computed along the ray paths. The CTD and ADCP data were acquired from a buoy system near the Mukho port in the East Sea of Korea and the ray paths were calculated by the Bellhop algorithm. As a result, the turbulence strength was mainly determined by the variation of temperature and flow speed, changing the phase variance of the received signals. Hence, we thought the phase variance should be considered in the sonar operating system.

An Analysis on the Operational Status of the Korea Coastal Cargo Vessel (한국연안화물선운실태의 분석)

  • 우창기;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.1-38
    • /
    • 1987
  • The amount of cargoes by cargo vessels has increased tremendously during the last decade due to the great growth of korea economy. But in spite of this trend, there is rarely the substantial analyzed on the operational status of coastal shipping. In this paper, the characteristics of seaborne cargo and traffic flow of coastal shipping surveyed in detail through the statistical and the origintain and destination (O.D) analysis. Also, the basic ship's tonnage of coastal shipping representing the minimum tonnage which is capable of carrying the given seaborne cargo is suggested through the computer simulation using the data of 1985 year. The results are as follows; 1) the about 80% of total coastal traffic volume is going in/out to the port of Incheon, Busan, Pohang, Samil, Bukpyung, Mukho, Samchuk, and Jeju. 2) The main cargo items such as oil, iron material, cement, anthracite grain, fertilizer, other ore are reached to the about 70% of total amount of coastal trade. 3) ship's tonnage going in/out to the port of Bukpyiung, Busan, Pohang is increasing linearly year by year, and the amount of oil, iron material, cement, anthracite, grain, fertilizer, other ore are also increasing in linear pattern. 4) As a result of simulation, the optimum (basic) ship's tonnage.

  • PDF

A Study on the Estimation Model of the Proper Cargo Handling Capacity based on Simulation in Port - Port Cargo Exclusive Pier Example - (항만에서 시뮬레이션 기반 적정하역능력 산정 모델에 관한 연구 - 항만 화물 전용부두 중심으로 -)

  • Park, Sang-Kook;Park, Nam-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2454-2460
    • /
    • 2013
  • So far, the port cargo handling capacity of general cargo was computed using simple formulae based on mathematical models. However, this simple calculation could not be able to reflect the reality. Thus, the simulation method was applied in this paper to overcome the limitation that the calculation method used in the past studies has. The process occurring from arrival to departure of a ship, which is reflecting the process rules of berth, was modeled to estimate the optimum level of handling capacity by using an example of the loading and unloading of an appropriated wharf at the harbor, and simulation was performed by developing the prototype. The actual processing capability of Mukho port was compared to the estimated capability calculated using the simulation method and the optimum level of capability could be computed by repeatedly simulating the input variable condition of the simulation prototype.

Numerical Simulation on Control of Tsunami by Resonator (II) (for Samcheok port) (공진장치에 의한 지진해일파의 제어에 관한 수치시뮬레이션(II) (삼척항에 대해))

  • Lee, Kwang-Ho;Jeon, Jong-Hyeok;Kim, Do-Sam;Lee, Yun-Du
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.496-505
    • /
    • 2020
  • In the previous research, the effectiveness of resonator was confirmed through the numerical analysis on two cases with the use of existing resonator at the Mukho and Imwon ports located in the eastern coast of South Korea by discussing the reduction rates of 1983 Central East Sea tsunami, and 1993 Hokkaido Southwest off tsunami, respectively. In this study, the reduction rates of tsunami height with three different resonators, Type I, II-1, and II-2, at the Samcheok port were examined respectively through the numerical analysis using COMCOT model under the same condition as the previous study. It was discussed the spatial distribution of maximum height of tsunami, change of water level, and effectiveness of resonator with the presence of new types of resonator, and change of their sizes. As a result, the effectiveness of resonator was verified through the application of new types of resonator reducing about maximum 40% of tsunami height. In order to design the optimal resonator for the variety of site condition, it is necessary to research about the various cases applying different shape, arrangement, and size of resonator as further study.