• Title/Summary/Keyword: Mucosal vaccines

Search Result 31, Processing Time 0.018 seconds

Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants

  • Rahmi Anggraeni;Ika Dewi Ana;Hevi Wihadmadyatami
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.3
    • /
    • pp.235-248
    • /
    • 2022
  • Currently, mucosal infectious diseases are still a very high global health burden, but there are few effective vaccines to prevent mucosal-borne diseases. The development of mucosal vaccines requires the selection of appropriate antigens, delivery system strategies, and adjuvants to increase vaccine efficacy but limited studies have been conducted. The aim of this review is to describe the mucosal immune system, as well as the potential for the development of vaccines and mucosal adjuvants, and their challenges. The study was conducted by applying inclusion criteria for the articles, and a review was conducted by two readers with the agreement. It was known that mucosal vaccination is a potential route to be applied in future preventive efforts through vaccination. However, limited studies have been conducted so far and limited mucosal vaccination has been approved. New technological approaches such as material development involving nano- and micro-patterning are important to intensively open and investigate the potential area of development to provide better vaccination methods.

Mucosal Immune System and M Cell-targeting Strategies for Oral Mucosal Vaccination

  • Kim, Sae-Hae;Lee, Kyung-Yeol;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.165-175
    • /
    • 2012
  • Vaccination is one of the most effective methods available to prevent infectious diseases. Mucosa, which are exposed to heavy loads of commensal and pathogenic microorganisms, are one of the first areas where infections are established, and therefore have frontline status in immunity, making mucosa ideal sites for vaccine application. Moreover, vaccination through the mucosal immune system could induce effective systemic immune responses together with mucosal immunity in contrast to parenteral vaccination, which is a poor inducer of effective immunity at mucosal surfaces. Among mucosal vaccines, oral mucosal vaccines have the advantages of ease and low cost of vaccine administration. The oral mucosal immune system, however, is generally recognized as poorly immunogenic due to the frequent induction of tolerance against orally-introduced antigens. Consequently, a prerequisite for successful mucosal vaccination is that the orally introduced antigen should be transported across the mucosal surface into the mucosa-associated lymphoid tissue (MALT). In particular, M cells are responsible for antigen up-take into MALT, and the rapid and effective transcytotic activity of M cells makes them an attractive target for mucosal vaccine delivery, although simple transport of the antigen into M cells does not guarantee the induction of specific immune responses. Consequently, development of mucosal vaccine adjuvants based on an understanding of the biology of M cells has attracted much research interest. Here, we review the characteristics of the oral mucosal immune system and delineate strategies to design effective oral mucosal vaccines with an emphasis on mucosal vaccine adjuvants.

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

Sublingual Delivery of Vaccines for the Induction of Mucosal Immunity

  • Shim, Byoung-Shik;Choi, Youngjoo;Cheon, In Su;Song, Man Ki
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2013
  • The mucosal surfaces are constantly exposed to incoming pathogens which can cause infections that result in severe morbidity and/or mortality. Studies have reported that mucosal immunity is important for providing protection against these pathogens and that mucosal vaccination is effective in preventing local infections. For many years, the sublingual mucosa has been targeted to deliver immunotherapy to treat allergic hypersensitivities. However, the potential of vaccine delivery via sublingual mucosal has received little attention until recently. Recent studies exploring such potential have documented the safety and effectiveness of sublingual immunization, demonstrating the ability of sublingual immunization to induce both systemic and mucosal immune responses against a variety of antigens, including soluble proteins, inter particulate antigens, and live-attenuated viruses. This review will summarize the recent findings that address the promising potential of sublingual immunization in proving protection against various mucosal pathogens.

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Efficacy and effectiveness of extended-valency pneumococcal conjugate vaccines

  • Lee, Hyunju;Choi, Eun Hwa;Lee, Hoan Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.2
    • /
    • pp.55-66
    • /
    • 2014
  • The 7-valent pneumococcal protein conjugate vaccine (PCV7) has been shown to be highly efficacious against invasive pneumococcal diseases and effective against pneumonia and in reducing otitis media. The introduction of PCV7 has resulted in major changes in the epidemiology of pneumococcal diseases. However, pneumococcal vaccines induce serotype-specific immunity, and a relative increase in non-vaccine serotypes has been reported following the widespread use of PCV7, leading to a need for extended serotype coverage for protection. PCV10 and PCV13 have been licensed on the basis of noninferiority of immunogenicity compared to a licensed conjugate vaccine. In this article, we aimed to review important data regarding the efficacy and effectiveness of the extended-coverage PCVs published or reported thus far and to discuss future implications for pneumococcal vaccines in Korea. After the introduction of PCV10 and PCV13, within a short period of time, evidence of protection conferred by these vaccines against invasive and mucosal infections caused by most of the serotypes included in the vaccines is accumulating. The choice of vaccine should be based on the changes in the dynamics of pneumococcal serotype distribution and diseases in the region where the vaccines are to be used. Continuous surveillance is essential for the appropriate use of pneumococcal vaccines and evaluation of the impact of PCVs on pneumococcal diseases.

Nasal vaccine as a booster shot: a viable solution to restrict pandemic?

  • Sarasa Meenakshi;V .Udaya Kumar;Sameer Dhingra;Krishna Murti
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) pandemic revolutionized the vaccine market and initiated the momentum for alternative routes of administration for vaccines. The intranasal route of immunization is one such possibility that appears to be the most promising since it has some significant advantages, particularly in the prevention of respiratory infection. To analyze and summarize the role of nasal vaccines over conventional vaccines during COVID-19 and the need for the nasal vaccine as a booster shot. In this narrative review, the required data was retrieved using keywords "COVID-19," "Intranasal," "Immunity," "Nasal spray," and "Mucosal" in databases including PubMed, Scopus, Embase, Science Direct, and Web of Sciences. The results of the study showed that the nasal vaccines were both effective and protective according to the current researches approaching during the COVID-19 period and the preclinical and clinical phase trials prove the intranasal vaccination elicits more robust and cross-protective immunity than conventional vaccines. In this narrative review article, mechanisms across the nasal mucosa will be briefly presented and the current status of nasal vaccines during the COVID-19 pandemic is summarized, and advantages over traditional vaccines are provided. Furthermore, after exploring the primary benefits and kinetics of nasal vaccine, the potential for consideration of nasal vaccine as a booster dose is also discussed.

Immunogenomics approaches to study host innate immunity against intestinal parasites

  • Lillehoj, Hyun S.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.7-16
    • /
    • 2006
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease - causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper - virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

  • PDF

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.