• Title/Summary/Keyword: Moving velocity

Search Result 1,026, Processing Time 0.028 seconds

Analysis of Foot-and-mouth Disease Diffusion Velocity using Network Tool (네트워크기법을 이용한 구제역 확산 속도 분석)

  • Choi, Seok-Keun;Song, Hae-Hwa;Park, Kyeong-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.101-107
    • /
    • 2012
  • With the foot-and-mouth disease problems emerging as a serious social issue, this study set out to analyze the problems with the current setting of preventive zones against epidemics and find ways to minimize damage through preventive measures. For those purposes, the study analyzed the outbreaks of the foot-and-mouth disease and assumed that the disease would be transmitted via vehicles along the roads based on the network map of national roads and boundaries among administrative districts to conduct network analysis. The analysis results were then used to estimate spread time, whose results were then categorized according to lineal road distance and actual road distance. Then lineal moving speed and actual moving speed on the road were obtained according to the national roads and administrative districts to analyze the problems with the current method of setting preventive zones against the foot-and-mouth disease. As for spread speed around the areas where the foot-and-mouth disease broke out, the average lineal spread speed was 53.9km/day, and the average spread speed on the road was 71.1km/day, which indicates there are problems with the current method of setting preventive zones against epidemics.

Three-Dimensional Digital Subtraction Angiography (디지털 혈관 조영술 영상의 3차원적 해석)

  • 이승지;김희찬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 1983
  • A dye-edge tracking algorithm was used to determine the corresponding points in the two images(anterior-posterior and lateral) of the digital subtraction biplane angiography. This correspondence was used to reconstruct three dimensional images of cerebral artery in a dog experiment. The method was tested by comparing the measured image of oblique view with the computed reconstructed image. For the present study, we have developed three new algorithms. The first algorithm is to determine the corresponding dye-edge points using the fact the dye density at the moving edge avows the same changing pattern in the two projection views. This moving pattern of dye-edge density is computed using a matching method of cross-correlation for the two sequential frames' dye density. The second algorithm is for simplified perspective transformation, and the third one is to identify the specific corresponding points on the small vessels. The present method can be applied to compute the blood velocity using the dye-edge displacement and the three- dimensional distance data.

  • PDF

A Study on a 3D Modeling for surface Inspection of a Moving Object (비등속 이동물체의 표면 검사를 위한 3D 모델링 기술에 관한 연구)

  • Ye, Soo-Young;Yi, Young-Youl;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-constant velocity moving object. 1'lie laser lines reflect tile surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. In this paper, we use multi-line laser to improve the single stripe method and high speed of single frame. Binarization and edge extraction of frame image were proposed for robust laser each line extraction. A new labeling method was used for laser line labeling. We acquired some feature points for image matching from the frame data and juxtaposed the frames data to obtain a 3D shape image. We verified the superiority of proposed method by applying it to inspect container's damages.

  • PDF

Numerical Analysis of Lifting Potential Flow around a Three-Dimensional Body moving beneath the Free Surface (자유표면하에서 전진하는 3차원 물체 주위의 양력 흐름 수치 해석)

  • B.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.21-32
    • /
    • 1992
  • Numerical solutions are presented for solving the free surface flow created by a three-dimensional body moving beneath the free surface with constant velocity at an angle of attack. The solution is obtained using a panel method based on the perturbation potential, which employs Havelock sources and normal dipoles distributed on the body surface and Havelock normal dipoles in the wake downstream of the trailing edge. A pressure Kutta condition with an iterative solution procedure is implemented to satisfy equal pressure condition on the upper and lower surfaces at the trailing edge. Numerical calculation examples in the present paper include an ellipsoid at zero angle of attack, a rectangular planform wing at a small angle of attack in the limit of zero Froude number and then free surface flows and hydrodynamic forces acting on the submerged spheroid and parabolic strut are calculated. Discussions are made about the validity of the present method.

  • PDF

K-Band Radar Development for the Ground Moving Vehicle (지상 이동 차량용 K-대역 레이다 개발)

  • Lee, Jong-Min;Cho, Byung-Lae;Sun, Sun-Gu;Lee, Jung-Soo;Park, Sang-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 2011
  • This paper presents a K-band radar system installed on the ground moving vehicle to detect and track a high-speed target. The presented radar is separated into three search regions to satisfy a wide area detection and a limitation of the installing space of the radar, and each region performs detecting the target independently and tracking the detected target automatically. The presented radar radiating K-band FMCW waveform acquires range and velocity information of the target at the every dwell and receiving antenna of the radar is applied the multiple baseline interferometer to extract the precise angle information of the target. 3-dimensional tracking accuracy of the radar is 0.25 m RMSE measured actually through a fire experiment of an imitation target.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

A Method for Real Time Target Following of a Mobile Robot Using Heading and Distance Information (방향각 및 거리 정보에 의한 이동 로봇의 실시간 목표물 추종 방법)

  • Ko, Nak-Yong;Seo, Dong-Jin;Moon, Yong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.624-631
    • /
    • 2008
  • This paper presents a method for a mobile robot to follow a moving object in real time. The robot follows a target object keeping the facing angle toward the target and the distance to the target to given value. The method consists of two procedures: first, the detection of target position in the robot coordinate system, and the second, the calculation of translational velocity and rotational velocity to follow the object:. To detect the target location, range sensor data is represented in histogram. Based on the real time calculation of the location of the target relative to the robot, translational velocity and rotational velocity to follow the target are calculated. The velocities make the heading angle and the distance to target converge toward the desired ones. The performance of the method is tested through simulation. In the simulation, the target moves with three different trajectories, straight line trajectory, rectangular trajectory, and circular trajectory. As shown in the results, it is inevitable to lose track temporarily of the target when the target suddenly changes its motion direction. Nevertheless, the robot speeds up to catch up and finally succeeds to follow the target as soon as possible even in this case. The proposed method can also be utilized to coordinate the motion of multiple robots to keep their formation as well as to follow a target.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.