• Title/Summary/Keyword: Moving velocity

Search Result 1,021, Processing Time 0.024 seconds

A Study on the Collection Characteristics of a Moving Electrode Electrostatic Precipitator - I. Effect of Collection Plate Velocity - (이동 전극형 전기집진기의 집진특성에 관한 연구 - I. 집진판 이동 속도의 영향-)

  • Kim Yong-Jin;Ha Byung-Kil;Jeong Sang-Hyun;Moon Sang-Cheol;Yoo Joo-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.901-907
    • /
    • 2004
  • This study investigate the effect of collection plate velocity on the electrical and collection characteristics of a moving electrode electrostatic precipitator (MEEP). Though a high resistivity fly ash is attached at the collecting electrode, the MEEP has very stable characteristics of voltage and corona current. Collection efficiency, corona current, and overall collection efficiency are increased, as the magnitude of the collection plate velocity increases.

Ground Moving Target's Velocity Estimation in SAR-GMTI (SAR-GMTI에서 지상이동표적의 속도 추정 기법)

  • Bae, Chang-Sik;Jeon, Hyeon-Mu;Yang, Dong-Hyeuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • A ground moving target's velocity estimation algorithm applicable for a SAR-GMTI system using 2 channel displaced phase center antenna(DPCA) is proposed. In this algorithm, we assume target's across-track velocity can be estimated by along-track interferometry (ATI) and present a method to estimate target's along-track velocity. To accomplish this method, we first transform a radar-target geometry in which a moving target has zero velocity via altering a radar velocity such that target's velocity is reflected into it and next manipulate the spectral centers of the subapertures within the synthetic aperture. The validity of the proposed algorithm is demonstrated through simulation results showing the performance of the target's velocity estimation and the enhancement of reconstructed target image quality in terms of resolution and SINR.

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

Ground Moving Target Displacement Compensation and Performance Analysis in the DPCA Based SAR-GMTI System (DPCA 기법을 이용한 SAR-GMTI 시스템에서 지상 이동 표적 오차 보상 기법 및 성능 분석)

  • Jung, Jae-Hoon;Jung, Jung-Soo;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1138-1144
    • /
    • 2009
  • The velocity and acceleration of the ground moving target can cause the target position to be displaced and defocused in the SAR image. In this paper, the displacement compensation scheme is presented to correct the displaced position and defocused moving target image in the DPCA based SAR-GMTI system. The influence of the ground moving target due to the velocity and acceleration is analyzed in range and azimuth directions, and its compensation method is presented with the simulation results. The performance of the proposed method is compared with respect to the estimated velocity and defocused quantity in both range and azimuth directions.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

The Study of automatic region segmentation method for Non-rigid Object Tracking (Non-rigid Object의 추적을 위한 자동화 영역 추출에 관한 연구)

  • 김경수;정철곤;김중규
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.183-186
    • /
    • 2001
  • This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.

  • PDF

A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics - (크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 -)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses (크랙과 이동질량을 가진 티모센코 보의 진동특성)

  • 안성진;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

Dynamic Behavior of Cracked Pipe Conveying Fluid with Moving Mass Based on Timoshenko Beam Theory

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2216-2224
    • /
    • 2004
  • In this paper we studied about the effect of the open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments i.e. the crack is modeled as a rotational spring. The influences of the crack severity, the position of the crack, the moving mass and its velocity, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the mid-span displacement of the simply supported pipe are depicted.

Motion Estimation of a Moving Object in Three-Dimensional Space using a Camera (카메라를 이용한 3차원 공간상의 이동 목표물의 거리정보기반 모션추정)

  • Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2057-2060
    • /
    • 2016
  • Range-based motion estimation of a moving object by using a camera is proposed. Whereas the existing results constrain the motion of an object for the motion estimation of an object, the constraints on the motion is relieved in the proposed method in that a more generally moving object motion can be handled. To this end, a nonlinear observer is designed based on the relative dynamics between the object and camera so that the object velocity and the unknown camera velocity can be estimated. Stability analysis and simulation results for the moving object are provided to show the effectiveness of the proposed method.