• Title/Summary/Keyword: Moving plate

Search Result 327, Processing Time 0.024 seconds

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

A Two-Step Micromirror for Low Voltage Operation

  • Hwang Yong-Ha;Han Seungoh;Lee Byung-Kab;Kim Jae-Soon;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.270-275
    • /
    • 2005
  • In order for the application of the in-vivo endoscopic biopsy, a micromirror which can be driven at a low voltage is required. In this paper, a two-step micromirror composed of bottom electrodes, moving plate and top mirror plate is proposed. Because an electrical wiring of two plates are separated, they can be actuated separately. Therefore, an intermediate moving plate plays an important role in reducing the driving voltage in half. The designed device was fabricated by the surface micromachining. Maximum rotation angle of $6.3^{\circ}$ was obtained by applying DC 48V, while a conventional one-step mirror pulled down at DC 120V. The designed structure can be used in microphotonic applications requiring low driving voltage.

A Study on the Collection Characteristics of a Moving Electrode Electrostatic Precipitator - I. Effect of Collection Plate Velocity - (이동 전극형 전기집진기의 집진특성에 관한 연구 - I. 집진판 이동 속도의 영향-)

  • Kim Yong-Jin;Ha Byung-Kil;Jeong Sang-Hyun;Moon Sang-Cheol;Yoo Joo-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.901-907
    • /
    • 2004
  • This study investigate the effect of collection plate velocity on the electrical and collection characteristics of a moving electrode electrostatic precipitator (MEEP). Though a high resistivity fly ash is attached at the collecting electrode, the MEEP has very stable characteristics of voltage and corona current. Collection efficiency, corona current, and overall collection efficiency are increased, as the magnitude of the collection plate velocity increases.

Dynamic Response Analysis of Stiffened Plates Subjected Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The dynamic response of stiffened rectangular plate subjected to a concentrated force or mass moving at constant speed is analyzed by using finite- element method. Stiffened plates are modelled as an assembly of isotropic thin plate elements and equivalent Euler beam ones, in which the beam elements represent the stiffener effects concentrated at the attached lines of stiffeners to the plates. The Newmark's time integration method is used to obtain the dynamic response of stiffened plates. Numerical examples are given to verify the validity of the presented method and also to investigate the effects of speed and moving mass on the dynamic characteristics of stiffened plates.

  • PDF

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

A Car Plate Area Detection System Using Deep Convolution Neural Network (딥 컨볼루션 신경망을 이용한 자동차 번호판 영역 검출 시스템)

  • Jeong, Yunju;Ansari, Israfil;Shim, Jaechang;Lee, Jeonghwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1166-1174
    • /
    • 2017
  • In general, the detection of the vehicle license plate is a previous step of license plate recognition and has been actively studied for several decades. In this paper, we propose an algorithm to detect a license plate area of a moving vehicle from a video captured by a fixed camera installed on the road using the Convolution Neural Network (CNN) technology. First, license plate images and non-license plate images are applied to a previously learned CNN model (AlexNet) to extract and classify features. Then, after detecting the moving vehicle in the video, CNN detects the license plate area by comparing the features of the license plate region with the features of the license plate area. Experimental result shows relatively good performance in various environments such as incomplete lighting, noise due to rain, and low resolution. In addition, to protect personal information this proposed system can also be used independently to detect the license plate area and hide that area to secure the public's personal information.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

NUMERICAL ANALYSIS OF JET IMPINGING ON A MOVING PLATE (움직이는 평면으로의 충돌 제트에 대한 수치해석)

  • Kang, Soo-Jin;Seo, Seok-Won;Lee, Kwan-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.129-134
    • /
    • 2011
  • In this paper, the confined single slot jet impingement is investigated numerically. Although the geometry of the jet impingement is simple, the flow pattern of the jet impingement is complex and the numerical results of the jet impingement is affected much by numerical methods. The first goal of this study is to analyze the effects of Reynolds models and numerical spatial discretization schemes on the results of heat transfer performance and the flaw characteristics and to select the best method. Various versions of the low Reynolds number k-epsilon turbulence models are compared. Using the selected numerical method, the flow field and heat transfer characteristics of confined single slot jet impingement on a moving plate are analyzed.

  • PDF

Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator (4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석)

  • Kim, Sung-Mok;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.