A Two-Step Micromirror for Low Voltage Operation

  • Hwang Yong-Ha (Department of Electrical Engineering, Korea University) ;
  • Han Seungoh (Department of Electrical Engineering, Korea University) ;
  • Lee Byung-Kab (Department of Electrical Engineering, Korea University) ;
  • Kim Jae-Soon (Department of Physics, Seoul National University) ;
  • Pak James Jungho (Department of Electrical Engineering, Korea University)
  • Published : 2005.12.01

Abstract

In order for the application of the in-vivo endoscopic biopsy, a micromirror which can be driven at a low voltage is required. In this paper, a two-step micromirror composed of bottom electrodes, moving plate and top mirror plate is proposed. Because an electrical wiring of two plates are separated, they can be actuated separately. Therefore, an intermediate moving plate plays an important role in reducing the driving voltage in half. The designed device was fabricated by the surface micromachining. Maximum rotation angle of $6.3^{\circ}$ was obtained by applying DC 48V, while a conventional one-step mirror pulled down at DC 120V. The designed structure can be used in microphotonic applications requiring low driving voltage.

Keywords

References

  1. G. J. Tearney, M.E. Brezinski, B.E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern and J. G. Fujimoto, 'In vivo endoscopic optical biopsy with optical coherence tomography,' Science, Vol. 276, pp. 2037- 2039, 1997 https://doi.org/10.1126/science.276.5321.2037
  2. J. Knittel, L. Schnieder, G. Guess, B. Messerchmidt, and T. Possner, 'Endoscope-compatible confocal microscope using a gradient index-lens system,' Optics Communications, Vol. 188, pp. 267-273, 2001 https://doi.org/10.1016/S0030-4018(00)01164-0
  3. L. Giniuna, R. Juskaitis, and S. V. Shatalin, 'Scanning fibre-optic microscope,' Electronics Letters, Vol. 27, No. 9, pp. 724-726, 1991 https://doi.org/10.1049/el:19910450
  4. D. L. Dickensheets and G. S. Kino, 'Siliconmicromachined scanning confocal optical microscope,' Journal of MEMS, Vol. 7, pp. 38-47, 1998 https://doi.org/10.1109/84.661382
  5. S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. S. Sun, and Y. Fainman, '3D profilomery using a dynamically configurable confocalmicroscope,' Proc. of SPIE, Vol. 3640, pp. 117-123, 1999
  6. X. M. Zhang, F. S. Chau, C. Quan, Y. L. Lam and A. Q. Liu, 'A study of the static characteristics of a torsional micromirror,' Sensors and Actuators A, Vol. 90, pp. 73-81, 2001 https://doi.org/10.1016/S0924-4247(01)00453-8
  7. S. Han, H. Park and J. Pak, 'Micromirror actuation with electrostatic force and plate bending,' Proc. of SPIE, Vol. 3899, pp. 117-123, 1999
  8. V. P. Jaechlin, C. Linder and N. F. de Rooij, 'Line-addressable torsional micromirrors for light modulator arrays,' Sensors and Actuators A, Vol. 41, pp. 324-329, 1994 https://doi.org/10.1016/0924-4247(94)80131-2
  9. J. C. Chiou and Y. H. Lin, 'A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect,' Journal of MEMS, Vol. 12, No. 6, pp. 913-920, 2003
  10. K. R. Williams, K. Gupta and M Wasilik, 'Etch rates for micromachining processing-Part II,' Journal of MEMS, Vol. 12, No. 6, pp. 761-778, 2003
  11. C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, 'A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,' Journal of Micromech. Microeng., pp. 726-732, 2001
  12. Y. J. Lee, S. Han and J. Pak, 'The comparison of stiction results of anti-stiction methods for polysilicon surface micromachining,' Journal of the Korean Sensors Society, Vol. 9, pp. 81-89, 2000