• 제목/요약/키워드: Moving object detection

검색결과 403건 처리시간 0.026초

최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안 (Method of Video Stitching based on Minimal Error Seam)

  • 강전호;김준식;김상일;김규헌
    • 방송공학회논문지
    • /
    • 제24권1호
    • /
    • pp.142-152
    • /
    • 2019
  • 기존 방송 콘텐츠 대비 더욱 생생한 현장감을 주는 초고해상도 콘텐츠에 대한 관심이 증가하고 있다. 하지만 기존의 방송 서비스에서 초고해상도 콘텐츠를 제공하기 위해서는 영상 획득 장치의 화각 및 개별 해상도 한계가 있다. 이러한 문제를 해결하기 위해 여러대의 입력 장치를 통한 영상합성 방법인 스티칭에 대한 연구가 다수 진행되고 있다. 본 논문에서는 기존 스티칭 연구에서의 단점 중 하나인 수평방향으로 촬영된 영상들 정합과정에서 이동하는 물체의 시불변성 훼손을 극복하기 위해, 최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안을 제안한다.

AI 알고리즘을 활용한 스마트 수레 카트 서비스 (Smart Trolley Service Using AI Algorithm)

  • 조기동;김민준;봉진훤;조성진;문재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.815-817
    • /
    • 2022
  • This paper is about the development of an automatic stair climbing trolley for carrying loads without manpower. The design of tri-wheeled structure and center of mass enable the trolley to move on flat ground and also to ascend stairs by self-balancing. The overall design enables the trolley to avoid collision to walls when the trolley rotates on domestic landings. When the camera recognizes the stair, the sensor measures distance from the trolley to the stair. Then the trolley can move to align itself in the middle of the stair and it starts climbing. It can ascend to a specific floor based on the floor number entered by the user. As a result, the automatic stair climbing trolley is expected to help humans by protecting from accidents of dropping loads and saving their power. It is also expected to use for various purposes such as delivering packages, moving and carrying heavy loads in buildings without elevator.

영상기반 지능형 무인 화재감시 시스템 (Video-based Intelligent Unmanned Fire Surveillance System)

  • 전형석;염동회;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.516-521
    • /
    • 2010
  • 본 논문은 퍼지 칼라모델을 이용한 영상기반의 지능형 무인 화재감시 시스템을 제안한다. 일반적으로 화재 감시를 위해 열이나 연기를 감지하는 별도의 장치를 사용하지만, 널리 보급된 폐쇄회로를 이용하면 별도의 장치와 추가적인 비용 없이 화재를 감시할 수 있다. 이와 같이 영상만으로 화재를 감시하는 시스템은 주로 연기나 불꽃을 추출하는 방법을 사용한다. 그러나 연기검출 방식은 야간에 회색계열의 연기를 검출하기 곤란하고, 불꽃검출 방식은 온도, 인화물질, 화재규모 등에 따른 불꽃색상의 변화에 대응하지 못하는 문제점을 가지고 있다. 본 논문은 무인환경 특히 야간 및 다양한 불꽃색상의 변화에 대응할 수 있는 강인한 화재감시 시스템을 다룬다. 이를 위해 폐쇄회로의 입력영상으로부터 움직임 영역을 추출하고, 퍼지 칼라모델을 이용한 색상과 히스토그램을 이용한 모양을 통해 불꽃 여부을 판단하고, 이것의 확산이 확인될 경우, 화재경보를 발령하는 시스템을 구현한다. 마지막으로, 통제된 실제 화재 실험을 통해 제안하는 방법의 유효성을 검증한다.

장면 전환 기법을 이용한 동영상 검색 시스템 설계 (Design of Moving Picture Retrieval System using Scene Change Technique)

  • 김장희;강대성
    • 대한전자공학회논문지SP
    • /
    • 제44권3호
    • /
    • pp.8-15
    • /
    • 2007
  • 최근 멀티미디어 데이터를 효율적으로 전송, 저장 관리 및 검색하는 기술이 중요한 핵심 기술로 대두되고 있다. 그 중에서 멀티미디어 정보 검색의 경우 사용자가 원하는 정보를 표현할 수 있는 사용자 인터페이스 기술과 원하는 정보를 사용자에게 신속하고 정확하게 보여주는 기술의 필요성이 증대하고 있다. 본 논문에서는 MPEG으로 압축된 영상 정보에서 장면의 전환점인 컷을 효과적으로 검출하여 동영상을 분할하는 기법을 제안한다. 컷 검출(Cut detection)은 MPEG 비디오 시퀀스에서 동영상을 분할하는 가장 기본적이면서 중요한 기초 작업이며, 비디오 색인 및 검색을 위한 첫 번째 단계이다. 기존의 방법들은 프레임간을 비교하기 때문에 물체의 빠른 움직임이나 카메라의 움직임, 후레쉬의 섬광 등 화면 변화에 따라 오검출이 생기는 단점이 있다. 제안하는 컷 검출 기법은 먼저 입력영상을 DCT의 DC를 이용하여 샷을 검출한다. 이렇게 검출된 샷으로 데이터베이스를 구성하고, MPEG-7의 시각 기술자 중 HMMD 컬러 모델과 에지 히스토그램을 사용하여 영상에서 특징을 추출하였다. 그리고 제안하는 매칭 기법에 따라 단계별 검색을 수행하였다. 이 실험을 통해서 기존 방법들보다 높은 검색률을 보이는 개선된 동영상 분할 시스템을 설계하였다.

기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적 (Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection)

  • 정준용;정병만;이규원
    • 한국정보통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.812-820
    • /
    • 2012
  • 본 논문에서는 지능형 감시 시스템에 부합하는 기울기 히스토그램 및 폐색 추적을 통한 다중보행자 추적 시스템을 제안한다. 먼저, 연속 영상에서 보행자의 특징을 이용하여 보행자를 검출한다. 보행자의 특징을 획득하기 위해 HOG(Histogram of Oriented Gradient)를 기반으로 기울기의 방향성을 이용한 블록별 히스토그램을 생성하고, Linear-SVM(Support Vector Machine)의 학습을 통해 보행자만을 분류한다. 다음으로 보행자의 위치정보를 이용하여 추적을 행한다. 마지막으로 추적이 끝날 경우 내용기반 검색이 가능한 움직임 궤적 디스크립터를 생성한다. 실험을 통해 제안한 방법이 기존 방법보다 빠르고 정확한 움직임 추적에 효과적임을 증명하였다.

합차신호를 이용한 차량용 듀얼 빔 레이저 레이더의 견고한 탐지 능력 향상 방안 (Detection Robustness Enhancement and Utility Scheme of Alternating Automotive Dual Beam Laser Radar)

  • 이성기;유승선;유강수;김삼택
    • 한국통신학회논문지
    • /
    • 제31권7C호
    • /
    • pp.743-754
    • /
    • 2006
  • 본 논문에서는 두 개의 다른 밀리미터 파장을 적용하는 광전계통의 구조 변경을 시도하고 신호 흡수나 환경적 간섭 왜곡에 취약한 싱글 빔(single beam) 레이저 방식의 단점을 보완한 듀얼 빔(dual beam) 방식의 레이저 레이더 시스템을 제안한다. 본 논문에서 제한 한 듀얼 빔 방식 레이더 시스템은 적은 신호 검파의 신뢰성 측면에서 통계적이며 분석적인 방법으로 제안하여 시스템의 우수성을 입증하고 AWGN 배경 잡음과 흡수 또는 간섭에 의해 레이저 신호의 왜곡이 발생하는 채널환경에서 시뮬레이션을 수행함으로써 신호 검파의 신뢰성 향상이 가능하다는 분석적 결과에 대한 정량적 재검증을 한다.

배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘 (A Real-time People Counting Algorithm Using Background Modeling and CNN)

  • 양훈준;장혁;정재협;이보원;정동석
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.70-77
    • /
    • 2017
  • 최근 IoT 및 딥러닝 관련 기술요소들이 영상보안감시시스템에서도 다양하게 응용되고 있다. 그 중 CCTV를 통해 촬영된 동영상에서 자동으로 특정 객체를 검출, 추적, 분류 하는 감시 기능이 점점 지능화되고 있다. 본 논문에서는 보급형 CPU만 사용하는 PC 환경에서도 실시간 처리가 가능한 알고리즘을 목표로 하였다. GMM(Gaussian Mixture Model)을 이용한 배경 모델링과 헝가리안 알고리즘, 그리고 칼만 필터를 조합한 추적 알고리즘은 전통적이며 복잡도가 비교적 적지만 검출 오류가 높다. 이를 보강하기 위해 대용량 데이터 학습에 적합한 딥러닝을 기술을 적용하였다. 특히 움직임이 있는 사람의 특징을 강조하기 위해 추적된 객체에 대해 SRGB-3 Layer CNN을 사용하였다. 성능 평가를 위해 기존의 HOG와 SVM을 이용한 시스템과 비교했을 때 Move-in은 7.6%, Move-out은 9.0%의 오류율 감소가 있었다.

불안정한 조명 환경에 강인한 참조 배경 영상의 갱신 기법 (Robust Method of Updating Reference Background Image in Unstable Illumination Condition)

  • 지영석;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.91-102
    • /
    • 2010
  • 기존의 감시 시스템이나 차량 검출 시스템은 제한되고 불안정한 조명환경에서는 객체들을 검출하기 어렵다. 본 논문에서는 불안정한 조명의 영향에 의한 문제점들을 해결하기 위해 참조 배경 영상의 적응적인 갱신 기법을 제안한다. 처음 입력영상을 참조 배경영상으로 설정하고 에지 성분에 따라 3가지 블록 크기로 나눈다. 그리고 각 블록의 밝기 변화량, 안정성, 색상 정보 그리고 에지 성분을 이용하는 블록상태 분석법이 적용된다. 참조 배경 영상에서 갱신된 블록과 같은 블록 상태를 갖는 인접하는 블록들을 하나의 블록으로 병합시킨다. 제안하는 기법은 움직이는 객체와 불안정한 조명을 구별할 수 있어 강인한 참조 배경 영상을 생성할 수 있다. 그리고 제안하는 블록 상태 분석법은 참조 배경 영상을 운영적인 측면과 시간적인 측면에서 매우 효율적으로 갱신시킨다. 본 논문은 제안하는 기법의 우수성을 입증하기 위해 조명이 빠르게 변화하는 도로 환경에서 제안하는 기법이 군집화를 통해 차량을 안정적으로 검출함을 보였다.

Abnormal behaviour in rock bream (Oplegnathus fasciatus) detected using deep learning-based image analysis

  • Jang, Jun-Chul;Kim, Yeo-Reum;Bak, SuHo;Jang, Seon-Woong;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • 제25권3호
    • /
    • pp.151-157
    • /
    • 2022
  • Various approaches have been applied to transform aquaculture from a manual, labour-intensive industry to one dependent on automation technologies in the era of the fourth industrial revolution. Technologies associated with the monitoring of physical condition have successfully been applied in most aquafarm facilities; however, real-time biological monitoring systems that can observe fish condition and behaviour are still required. In this study, we used a video recorder placed on top of a fish tank to observe the swimming patterns of rock bream (Oplegnathus fasciatus), first one fish alone and then a group of five fish. Rock bream in the video samples were successfully identified using the you-only-look-once v3 algorithm, which is based on the Darknet-53 convolutional neural network. In addition to recordings of swimming behaviour under normal conditions, the swimming patterns of fish under abnormal conditions were recorded on adding an anaesthetic or lowering the salinity. The abnormal conditions led to changes in the velocity of movement (3.8 ± 0.6 cm/s) involving an initial rapid increase in speed (up to 16.5 ± 3.0 cm/s, upon 2-phenoxyethanol treatment) before the fish stopped moving, as well as changing from swimming upright to dying lying on their sides. Machine learning was applied to datasets consisting of normal or abnormal behaviour patterns, to evaluate the fish behaviour. The proposed algorithm showed a high accuracy (98.1%) in discriminating normal and abnormal rock bream behaviour. We conclude that artificial intelligence-based detection of abnormal behaviour can be applied to develop an automatic bio-management system for use in the aquaculture industry.

FOD 탐지 FMCW 레이다에서 지면 클러터 모델링 및 탐지성능에 대한 영향 분석 (Ground Clutter Modelling and Its Effect of Detection Performance in FOD FMCW Radar)

  • 송승언;김봉석;김상동;김민수;김윤섭;이종훈
    • 한국시뮬레이션학회논문지
    • /
    • 제27권4호
    • /
    • pp.61-68
    • /
    • 2018
  • 본 논문에서는 FOD (foreign object debris) FMCW (frequency modulated continuous waveform) 레이다에 대한 지상 클러터 모델링 및 검출 성능에 미치는 영향을 분석한다. 레이다 수신신호에는 FOD에 의해 반사된 신호 뿐 만 아니라 활주로 표면 및 잔디영역에 의해 반사된 신호까지 포함된다. FOD의 RCS (radar cross section)가 잔디영역의 RCS와 거의 같기 때문에 클러터 제거 알고리즘을 적용하지 않으면 FOD의 검출이 어렵다. 또한, FOD와 클러터 모두가 움직이지 않기 때문에, 대표적 클러터 제거 알고리즘인 MTI (moving target indicator) 기법의 적용이 어렵다. 따라서 클러터 맵을 이용한 클러터 제거 기법이 필요하고, 이를 위해서는 활주로 표면을 고려한 클러터 맵을 정확하게 생성하는 것이 중요하다. 본 논문에서는 신뢰도 높은 클러터 맵을 생성하기 위해 FOD가 없는 표면의 경우에만 모든 범위의 레인지 빈에 대해 각각의 비트신호를 생성하고, 생성된 비트 신호를 100번 누적하였으며 RCS 값에 웨이블 분포를 적용하였다. 시뮬레이션 결과는 생성된 클러터 맵을 FOD FMCW 레이다에 적용함으로써 FOD가 제대로 검출됨을 보인다.