• Title/Summary/Keyword: Moving object detection

Search Result 402, Processing Time 0.027 seconds

Performance Comparison and Test of Fixed FOD Automatic Detection System and Moving FOD Automatic Detection System (고정형 이물질(FOD) 자동 탐지 시스템과 이동형 이물질 자동 탐지 시스템의 성능 비교 및 시험)

  • Kim, Sung-Hee;Hong, Jae-Beom;Park, Kwang-Gun;Choi, In-Kyu;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.495-500
    • /
    • 2019
  • Foreign object debris (FOD) is a generic term for various metals and non-metal foreign object and materials with potential hazards to aircraft operations. Since the method of manual FOD detection and collection in the aircraft moving area is very low in efficiency and economic efficiency, it is essential to develop to FOD automatic detection system suitable for domestic environment. This paper is the result of the performance comparison test results of the two systems for the combined operation of each optimal detection time and 95% accuracy above 100 m for complex operation using the fixed FOD automatic detection system and the mobile FOD system using EO/IR camera and radar at Taean Airfield Hanseo University. It is expected that FOD can be performed unattended through continuous R & D.

Moving Object Trajectory based on Kohenen Network for Efficient Navigation of Mobile Robot

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • In this paper, we propose a novel approach to estimating the real-time moving trajectory of an object is proposed in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.297-302
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous computing environment and applications, for which Radio Frequency Identification(RFID) has been considered as a core technology. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and kcan be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in I-Dimensional space, the square in 2-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.

Object Motion Analysis and Interpretation in Video

  • Song, Dan;Cho, Mi-Young;Kim, Pan-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.694-696
    • /
    • 2004
  • With the more sophisticated abilities development of video, object motion analysis and interpretation has become the fundamental task for the computer vision understanding. For that understanding, firstly, we seek a sum of absolute difference algorithm to apply to the motion detection, which was based on the scene. Then we will focus on the moving objects representation in the scene using spatio-temporal relations. The video can be explained comprehensively from the both aspects : moving objects relations and video events intervals.

  • PDF

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

Robust 3D visual tracking for moving object using pan/tilt stereo cameras (Pan/Tilt스테레오 카메라를 이용한 이동 물체의 강건한 시각추적)

  • Cho, Che-Seung;Chung, Byeong-Mook;Choi, In-Su;Nho, Sang-Hyun;Lim, Yoon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.77-84
    • /
    • 2005
  • In most vision applications, we are frequently confronted with determining the position of object continuously. Generally, intertwined processes ire needed for target tracking, composed with tracking and control process. Each of these processes can be studied independently. In case of actual implementation we must consider the interaction between them to achieve robust performance. In this paper, the robust real time visual tracking in complex background is considered. A common approach to increase robustness of a tracking system is to use known geometric models (CAD model etc.) or to attach the marker. In case an object has arbitrary shape or it is difficult to attach the marker to object, we present a method to track the target easily as we set up the color and shape for a part of object previously. Robust detection can be achieved by integrating voting-based visual cues. Kalman filter is used to estimate the motion of moving object in 3D space, and this algorithm is tested in a pan/tilt robot system. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

A Fuzzy Logic System for Detection and Recognition of Human in the Automatic Surveillance System (유전자 알고리즘과 퍼지규칙을 기반으로한 지능형 자동감시 시스템의 개발)

  • 장석윤;박민식;이영주;박민용
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.237-240
    • /
    • 2001
  • An image processing and decision making method for the Automatic Surveillance System is proposed. The aim of our Automatic Surveillance System is to detect a moving object and make a decision on whether it is human or not. Various object features such as the ratio of the width and the length of the moving object, the distance dispersion between the principal axis and the object contour, the eigenvectors, the symmetric axes, and the areas if the segmented region are used in this paper. These features are not the unique and decisive characteristics for representing human Also, due to the outdoor image property, the object feature information is unavoidably vague and inaccurate. In order to make an efficient decision from the information, we use a fuzzy rules base system ai an approximate reasoning method. The fuzzy rules, combining various object features, are able to describe the conditions for making an intelligent decision. The fuzzy rule base system is initially constructed by heuristic approach and then, trained and tasted with input/output data Experimental result are shown, demonstrating the validity of our system.

  • PDF

An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION (Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Hang, Goo-Seun;Ahn, Sang-Ho;Kang, Byoung-Doo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Detecting a moving object from videos and tracking it are basic and necessary preprocessing steps in many video systems like object recognition, context aware, and intelligent visual surveillance. In this paper, we propose a method that is able to detect a moving object quickly and accurately in a condition that background and light change in a real time. Furthermore, our system detects strongly an object in a condition that the target object is covered with other objects. For effective detection, effective Eigen-space and FCM are combined and employed, and a CONDENSATION algorithm is used to trace a detected object strongly. First, training data collected from a background image are linear-transformed using Principal Component Analysis (PCA). Second, an Eigen-background is organized from selected principal components having excellent discrimination ability on an object and a background. Next, an object is detected with FCM that uses a convolution result of the Eigen-vector of previous steps and the input image. Finally, an object is tracked by using coordinates of an detected object as an input value of condensation algorithm. Images including various moving objects in a same time are collected and used as training data to realize our system that is able to be adapted to change of light and background in a fixed camera. The result of test shows that the proposed method detects an object strongly in a condition having a change of light and a background, and partial movement of an object.