• Title/Summary/Keyword: Moving object classification

Search Result 45, Processing Time 0.028 seconds

Adaptive Fuzzy Inference Algorithm for Shape Classification

  • Kim, Yoon-Ho;Ryu, Kwang-Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.611-618
    • /
    • 2000
  • This paper presents a shape classification method of dynamic image based on adaptive fuzzy inference. It describes the design scheme of fuzzy inference algorithm which makes it suitable for low speed systems such as conveyor, uninhabited transportation. In the first Discrete Wavelet Transform(DWT) is utilized to extract the motion vector in a sequential images. This approach provides a mechanism to simple but robust information which is desirable when dealing with an unknown environment. By using feature parameters of moving object, fuzzy if - then rule which can be able to adapt the variation of circumstances is devised. Then applying the implication function, shape classification processes are performed. Experimental results are presented to testify the performance and applicability of the proposed algorithm.

  • PDF

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

DEEP-South: A New Taxonomic Classification of Asteroids

  • Roh, Dong-Goo;Moon, Hong-Kyu;Shin, Min-Su;Lee, Hee-Jae;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2016
  • Asteroid taxonomy dates back to the mid-1970's and is based mostly on broadband photometric and spectroscopic observations in the visible wavelength. Different taxonomic classes have long been characterized by spectral slope shortward of 0.75 microns and the absorption band in 1 micron, the principal components. In this way, taxonomic classes are grouped and divided into four broad complexes; silicates (S), carbonaceous (C), featureless (X), Vestoids (V), and the end-members that do not fit well within the S, C, X and V complexes. The past decade witnessed an explosion of data due to the advent of large-scale asteroid surveys such as SDSS. The classification scheme has recently been expanded with the analysis of the SDSS 4th Moving Object Catalog (MOC 4) data. However, the boundaries of each complex and subclass are rather ambiguously defined by hand. Furthermore, there are only few studies on asteroid taxonomy using Johnson-Cousins filters, and those were conducted on a small number of objects, with significant uncertainties. In this paper, we present our preliminary results for a new taxonomic classification of asteroids using SMASS, Bus and DeMeo (2014) and the SDSS MOC 4 datasets. This classification scheme is simply represented by a triplet of photometric colors, either in SDSS or in Johnson-Cousins photometric systems.

  • PDF

An Effective Shadow Elimination Method Using Adaptive Parameters Update (적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법)

  • Kim, Byeoung-Su;Lee, Gwang-Gook;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.11-19
    • /
    • 2008
  • Background subtraction, which separates moving objects in video sequences, is an essential technology for object recognition and tracking. However, background subtraction methods are often confused by shadow regions and this misclassification of shadow regions disturbs further processes to perceive the shapes or exact positions of moving objects. This paper proposes a method for shadow elimination which is based on shadow modeling by color information and Bayesian classification framework. Also, because of dynamic update of modeling parametres, the proposed method is able to correspond adaptively to illumination changes. Experimental results proved that the proposed method can eliminate shadow regions effectively even for circumstances with varying lighting condition.

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

Stereoscopic Video Conversion Based on Image Motion Classification and Key-Motion Detection from a Two-Dimensional Image Sequence (영상 운동 분류와 키 운동 검출에 기반한 2차원 동영상의 입체 변환)

  • Lee, Kwan-Wook;Kim, Je-Dong;Kim, Man-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1086-1092
    • /
    • 2009
  • Stereoscopic conversion has been an important and challenging issue for many 3-D video applications. Usually, there are two different stereoscopic conversion approaches, i.e., image motion-based conversion that uses motion information and object-based conversion that partitions an image into moving or static foreground object(s) and background and then converts the foreground in a stereoscopic object. As well, since the input sequence is MPEG-1/2 compressed video, motion data stored in compressed bitstream are often unreliable and thus the image motion-based conversion might fail. To solve this problem, we present the utilization of key-motion that has the better accuracy of estimated or extracted motion information. To deal with diverse motion types, a transform space produced from motion vectors and color differences is introduced. A key-motion is determined from the transform space and its associated stereoscopic image is generated. Experimental results validate effectiveness and robustness of the proposed method.

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF

Detection of a Moving Object by Multi-channel SQUID Magnetometer System (다중채널 고온초전도 양자간섭소자 자력계 시스템을 이용한 이동 물체 탐지)

  • Lee, H.J.;Lee, S.-M.;Lee, H.N.;Yun, J.H.;Moon, S.H.;Lim, S.H.;Kim, D.Y.;Oh, B.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.56-59
    • /
    • 2001
  • We have constructed a multi-channel SQUID magnetometer system for localization and classification of magnetic targets. Ten SQUID magnetometers were arranged to measure 5 independent components of 3 $\times$ 3 magnetic field gradient tensor. To get gradient from the difference of magnetic field measurements, we carefully balanced magnetometers. SQUIDs with slotted washer were used for operation in an unshielded laboratory environment, and noise characteristic in the laboratory was measured. With the multi-channel SQUID magnetometer system, we have successfully traced the motion of a bar magnet moving around it at a distance of about 1 m. In the urban environment, the drift of uniform magnetic field due to the irregular motion of a large magnetic body at distance and earth field causes an error in the position calculation, and this results in the distortion of the calculated trajectory. In this paper, we present the architecture and the performance of the system.

  • PDF

A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths (향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.264-266
    • /
    • 2022
  • In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.

  • PDF

Fast information extraction algorithm for object-based MPEG-4 conversion from MPEG-1,2 (MPEG-1,2로부터 객체 기반 MPEG-4 변환을 위한 고속 정보 추출 알고리즘)

  • 양종호;박성욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.91-102
    • /
    • 2004
  • In this paper, a fast information extraction algorithm for object-based MPEG-4 application from MPEG-1,2 is proposed. For object-based MPEG-4 conversion, we need to extract such information as object-image, shape-image, macro-block motion vector, and header information from MPEG-1,2 bit-stream. If we use the extracted information, fast conversion for object-based MPEG-4 is possible. The proposed object extraction algerian has two important steps, namely the motion vector extraction from MPEG-1,2 bit-stream and the watershed algerian The algorithm extracts objects using user's assistance in the intra frame and tracks then in the following inter frames. If we have an unsatisfactory result for a fast moving object the user can intervene to connect the segmentation. The proposed algorithm consist of two steps, which are intra frame object extracting processing and inter frame tracking processing. Object extracting process is the step in which user extracts a semantic object directly by using the block classification and watersheds. Object tracking process is the step of the following the object in the subsequent frames. It is based on the boundary fitting method using motion vector, object-mask and modified watersheds. Experimental results show that the proposed method can achieve a fast conversion from the MPEG-1,2 bit-stream to the object-based MPEG-4 input.