• Title/Summary/Keyword: Moving mesh method

Search Result 152, Processing Time 0.034 seconds

Numerical Study on Effects of Design Factors on Flow Characteristics of a Vane Pump (베인 펌프 설계인자 변화에 따른 내부 유동 해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.24-31
    • /
    • 2007
  • In the present study, the effects of the design factors and operating conditions on flow characteristics of a vane pump for the automotive power steering system has been analyzed numerically. An unsteady moving mesh technique with cell expansion/contraction method is used to simulate the rotation of vanes with respect to stationary inlet and outlet. As a result, the flow characteristics of the flow rate and pressure rise across the vane pump were obtained. The numerical analyses for the various design factors such as number of vanes and thickness between the rotor and camring and for various operating conditions such as rotational speed and pressure difference between inlet and outlet were extensively performed. And the results were discussed in the paper.

Direct Thrust Control of Permanent Magnet Linear Synchronous Motor (영구자석형 선형 동기전동기의 직접 추력 제어)

  • Woo, Kyung-Il;Kwon, Byung-Il;Rhyu, Se-Hyun;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.316-318
    • /
    • 1998
  • This paper describes the direct thrust control of permanent magnet linear synchronous motor (PMLSM) with the secondary aluminium sheet. The time stepped finite element method and moving mesh technique are used for simulating dynamic characteristics of the PMLSM. The secondary back-iron conductivity as well as the initial flux linkage due to permanent magnet are considered in the simulation.

  • PDF

The On-line Identification System Characteristics Analysis of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법과 프라이자흐 모델을 이용한 동기형 릴럭턴스 전동기( Synchronous Reluctance Motor : SynRM)의 On-line 판정시스템 특성 해석)

  • Kim, Hong-Seok;Lee, Myoung-Ki;Lee, Min-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1001-1002
    • /
    • 2007
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the efficiency of on-line parameter identification system for position sensorless control of a SynRM under saturation and iron loss. Comparisons are given with angle of the observer and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively. The position sensorless control using identified motor parameters is realized, and the effective of the on-line parameter identification system is verified by experimental results.

  • PDF

Dynamic Characteristics Analysis of Linear Induction Motor with Joints in the Secondary Conductor (이차측에 접합 부분을 갖는 선형 유도전동기의 동특성 해석)

  • Woo, Kyung-Il;Kwon, Byung-Il;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.7-9
    • /
    • 1998
  • In this paper, dynamic characteristics analysis of linear induction motor with joints in the secondary conductor is discussed. The time stepped finite element method and moving mesh technique are used for simulation. ${\nabla}{\phi}$ of jointed secondary conductor is defined for simulation, respectively. Simulation results have shown that joints in the secondary conductor affect thrust ripple and attractive force ripple.

  • PDF

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Thrust Characteristics Analysis considering the effect of the loops of flux in a LIM for Railway Transit (맴돌이 자속의 영향을 고려한 철도차량용 선형유도전동기의 추력 특성 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Han, Kyung-Hee;Lee, Byung-Song;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1605-1609
    • /
    • 2007
  • In the case of Linear induction motor(LIM), numerical analysis method like Finite Element Method(FEM) has been mainly used to analyze the travelling magnetic field problem which includes the velocity-induced electromotive force. If the problem including the velocity-induced electromotive force is analyzed by FEM using Galerkin method, the solution can be oscillated according to Peclet Number, which is determined by conductivity, permeability, moving velocity and size of mesh. Consequently, the accuracy of the solution can be low and the Loops of flux can be occurred at the secondary back-iron. These loops of flux occurred at the secondary back-iron does not exist physically, but it can be occurred in the analysis. In this case, the loops of flux can be generally removed by using Up-Wind method which is impossible to apply a conventional S/W tool(Maxwell 2D). Therefore, in this paper, authors examined the Loops of flux occurred at the secondary back-iron of LIM according to variations of Peclet Number, and analyzed whether these loops of flux affect on the thrust force characteristics of LIM or not.

  • PDF

A Study on Improvement of Routing Performance for Wireless Mesh Networks (무선 메시 네트워크의 라우팅 성능 개선 연구)

  • Kim, Ho-Cheal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2422-2429
    • /
    • 2013
  • WMN is considered as a core methodology to provide mobile wireless network service with multi-hop routing feature. It has a merit that can be easily deployed by utilization of protocols for MANET. However, it has differences in supporting multiple networks and channels, network architecture, and so on. Especially, in case of routing protocols, to apply them intactly to WMN can be a cause of low performance because of do not moving mesh routers. AODV seems like suitable for WMN among the various routing protocols for MANET. However, it has a defect in scalability. In this paper, an enhanced AODV routing method for WMN was proposed. The proposed method was designed to be suitable to the architecture of WMN by use of layering and localizing the broadcasting domain.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-44
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. The thermogravimetric analysis (TGA) techniques have been used to characterize the thermal decomposition constants for Arrhenius parameters. Two heterogeneous reactions involving carbon and the oxidizing species of $H_2O$ and $CO_2$ are considered and determined by Zvyagin's ablation model and kinetic constants. The moving boundary problem and mesh moving are solved by remeshing-rezoning method in MSC-Marc-ATAS program. The difference between the calculated and experimental value of char and ablation thickness is up to 20%. For the performance prediction of thermal protection systems, this method will be integrated with a three-dimensional finite-element thermal and structure analysis code through the real time sensing of in-depth temperature and heat flux.

FEM Modeling Automation of Machine Tools Structure (공작기계 구조물의 전산 모델링 자동화)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1043-1049
    • /
    • 2012
  • The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.