• Title/Summary/Keyword: Moving mesh method

Search Result 152, Processing Time 0.028 seconds

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

Experimental and numerical study on aerodynamic characteristics of suspended monorail trains passing each other under crosswinds

  • Yulong Bao;Wanming Zhai;Chengbiao Cai;Shengyang Zhu;Yongle Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.361-373
    • /
    • 2023
  • Suspended monorail trains (SMTs) are sensitive to crosswinds, and instantaneous aerodynamic characteristics of two SMTs passing each other under crosswinds are particularly complicated. In this study, a pressure measurement test is carried out on stationary train-bridge models arranged in several critical positions. In addition, a validated moving CFD model is developed with the dynamic and sliding mesh method to explore the realistic train movement effects. The time-varying aerodynamic forces and surface pressure distribution on, as well as the flow field around running trains and bridges during trains passing each other, are computed in detail to illustrate the shielding effect of the upstream train. The results reveal that when two trains begin to pass each other, the side force coefficient of the downstream train reduces significantly to negative values due to the wind shielding effect of the upstream train. The moving model successfully captures that airflow is separated on the middle line of the head car for the suspended monorail train, and the surrounding bluff double-beams can significantly affect the flow structures around the train. The wind shielding effect of the upstream train on the downstream train will weaken as the relative yaw angle decreases.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

A Experimental Study on the Complex Waterproofing Method of Exposure using PE Textiles of Mesh type and Highly Viscous Urethane (망사형 PE직물과 고점도 우레탄을 이용한 복층형 노출 방수공법에 관한연구)

  • Shao, Xu-Dong;Song, Je-Young;Kim, Young-Suk;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.127-130
    • /
    • 2011
  • The duplex waterproofing construction method has been investigated to improve various problems (how to fix the sheet, breaking, air/water pocket, and cracks caused by different materials) of the existing rooftop exposed waterproofing construction method. By using fiber sheet, Net PE fabric, and thixotropy urethane with high viscosity, the waterproofing construction method is to glue the ground and waterproof course by circular dot. The method is also to construct the waterproof course with high hardness by using waterproof membrane coatings in upper hybrid system. By gluing the ground and the waterproof course by circular dot, the study is expected to be useful to minimize the simultaneous breaking in the waterproof course as tensile stress is buffer in case of the ground crackling. Also, since the waterproofing construction method is good at moving and emitting vapor from the ground, it is considered to be effective to minimize any damages caused by air/water pocket and get loose of the waterproof course.

  • PDF

NUMERICAL STUDY OF PROPELLER AND HIGH LIFT DEVICE AERODYNAMIC INTERFERENCES (프로펠러와 고양력 장치와의 공력간섭에 대한 수치해석 연구)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially propeller effect on the wing surface is much more dominant when aircrafts are in landing or take-off conditions. In the present paper, three dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out for medium sized turboprop aircraft. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion between moving and static bodies. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift by eliminating local flow separation region and this enhancement was more dominant with high lift device.

A Study on the Temperature Distribution of Metal Casting Mould (주조금형(鑄造金型)의 온도분포(溫度分布)에 관한 연구(硏究))

  • Min, Soo-Hong;Kim, Ok-Sam;Koo, Bon-Kwan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.79-84
    • /
    • 1991
  • The process of solidification of metal is accompanied by liquid-solid change and known as Stefan's heat conduction problem on the moving boundary. In this study the temperature distribution in ingot and metallic mould during casting was analyzed by the two dimensional heat conduction theory. The transient temperature distribution was numerically calculated using a finite element method on the nodal point of mesh screen representing ingot and mould cross section. The theory was applied on the casting of aluminum(purity ; 99%) in flat ingot mould of GC25. The analysis will make it possible to calculate an optimum mould shape of which temperature gradient becomes minimum.

  • PDF

NUMERICAL PREDICTION OF THE CROSS-FLOW FAN PERFORMANCE AND NOISE CHARACTERISTICS BY UNSTRUCTURED FLOW SOLVER ALGORITHM (비정렬 격자기법을 이용한 횡류팬(Cross-Flow Fan)의 비정상 유동해석)

  • Cho Yong;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.36-41
    • /
    • 1998
  • The cross-flow fan performance and its sound noise characteristics are predicted by computational methods. The unsteady incompressible Navier-Stokes equations in moving coordinates are solved by a SMAC method on unstructured triangular meshes, using a sliding mesh technique at the interface between the domain rotating with blades and the rest stationary part. The computationally predicted fan performance was favorably compared with experiment, and some numerical aspects of simulating the cross-flow fan are discussed. With the computed unsteady flow field, aeroacoustic sound noise of the fan is predicted by the Lighthill-Curie equation. The unsteady surface pressure fluctuations on stabilizer enables a prediction of BPF noise of the uniform pitch blade fan quite accurately. The aeroacoustic sound noise characteristics of both uniform and random pitch blade fans are also examined by SPL spectrum analysis.

  • PDF

The On-line Observer System Characteristics Analysis of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법과 프라이자흐 모델을 이용한 동기형 릴럭턴스 전동기(Synchronous Reluctance Motor: SynRM)의 On-line 관측기시스템 특성해석)

  • Kim, Hong-Seok;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2103-2108
    • /
    • 2007
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the efficiency of on-line parameter identification system for position sensorless control of a SynRM considering saturation and iron loss. Comparisons are given with angle of the observer and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively. The position sensorless control using identified motor parameters is realized, and the efficiency of the on-line parameter identification system is verified by experimental results.

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Sensorless Vector Control Parameters Estimation of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법(FEM)과 프라이자흐모델을 사용한 동기형 릴럭턴스 모터의 센서리스 백터제어 제정수 산정)

  • Kim, Hong-Seok;Park, Jung-Min;Lee, Min-Myung;Lee, Jung-Ho;Chun, Jang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.673-674
    • /
    • 2006
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the sensorless vector control parameters estimation of SynRM under saturation and iron loss. Comparisons are given with dynamic characteristics of normal single B-H nonlinear solutions and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively.

  • PDF