• Title/Summary/Keyword: Moving mesh method

Search Result 152, Processing Time 0.026 seconds

THE NUMERICAL SOLUTION OF SHALLOW WATER EQUATION BY MOVING MESH METHODS

  • Shin, Suyeon;Hwang, Woonjae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.563-577
    • /
    • 2012
  • This paper presents a moving mesh method for solving the hyperbolic conservation laws. Moving mesh method consists of two independent parts: PDE evolution and mesh- redistribution. We compute numerical solution of shallow water equation by using moving mesh methods. In comparison with computations on a fixed grid, the moving mesh method appears more accurate resolution of discontinuities.

A Numerical Analysis on Flows Around a Moving Body Using a Mesh Transformation Method (격자변환기법을 이용한 이동물체 주위의 유동해석)

  • Kim, Tae-Gyun;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.593-599
    • /
    • 2001
  • A flow analysis is performed in the present study for the moving body problem by proposing a mesh transformation method for the movement of the body in the fluid medium. Unlike other moving mesh techniques, a mesh itself is not moving but changes its property as time marches in a mesh transformation method. The flow field results are compared with those by other moving mesh technique, and showed good agreements. The movement of a floatable body in the flow field caused by the moving body is also studied in the present study by using a mesh transformation technique and a fluid/structure interaction method.

A new moving-mesh Finite Volume Method for the efficient solution of two-dimensional neutron diffusion equation using gradient variations of reactor power

  • Vagheian, Mehran;Ochbelagh, Dariush Rezaei;Gharib, Morteza
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1181-1194
    • /
    • 2019
  • A new moving-mesh Finite Volume Method (FVM) for the efficient solution of the two-dimensional neutron diffusion equation is introduced. Many other moving-mesh methods developed to solve the neutron diffusion problems use a relatively large number of sophisticated mathematical equations, and so suffer from a significant complexity of mathematical calculations. In this study, the proposed method is formulated based on simple mathematical algebraic equations that enable an efficient mesh movement and CV deformation for using in practical nuclear reactor applications. Accordingly, a computational framework relying on a new moving-mesh FVM is introduced to efficiently distribute the meshes and deform the CVs in regions with high gradient variations of reactor power. These regions of interest are very important in the neutronic assessment of the nuclear reactors and accordingly, a higher accuracy of the power densities is required to be obtained. The accuracy, execution time and finally visual comparison of the proposed method comprehensively investigated and discussed for three different benchmark problems. The results all indicated a higher accuracy of the proposed method in comparison with the conventional fixed-mesh FVM.

Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique (Moving Mesh Technique을 이용한 2차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects $DuraCrete^{TM}$ model rather than $Life365^{TM}$ model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.

Content Based Mesh Motion Estimation in Moving Pictures (동영상에서의 내용기반 메쉬를 이용한 모션 예측)

  • 김형진;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.35-38
    • /
    • 2000
  • The method of Content-based Triangular Mesh Image representation in moving pictures makes better performance in prediction error ratio and visual efficiency than that of classical block matching. Specially if background and objects can be separated from image, the objects are designed by Irregular mesh. In this case this irregular mesh design has an advantage of increasing video coding efficiency. This paper presents the techniques of mesh generation, motion estimation using these mesh, uses image warping transform such as Affine transform for image reconstruction, and evaluates the content based mesh design through computer simulation.

  • PDF

Moving Mesh Technique for Dynamic Characteristics Analysis of Permanent Magnet Linear Synchronous (영구 자석형 선형 동기전동기의 동특성 해석을 위한 이동 메쉬 기법)

  • Woo, Kyung-Il;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • This paper describes a moving mesh technique for dynamic characteristics analysis of permanent magnet linear synchronous motor with the secondary aluminium sheet. The moving mesh technique applied to the linear induction motor can be used to analyze the linear synchronous motor with the rectangular permanent magnet. But in case of the permanent magnet with taper, the shape of the permanent magnet is presented. The time-stepped finite element method is used for the dynamic characteristics simulation of the permanent magnet linear synchronous motor, The results of application example(hysteresis current controlled inverter fed control) such as thrust, current and flux plots are shown.

  • PDF

ANALYSIS OF TWO-DIMENSIONAL FLOW AROUND AN OSCILLATING CYLINDER USING MOVING MESH TECHNIQUES (격자 변형 기법을 사용한 운동하는 2차원 실린더 주위의 유동 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyng
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.542-547
    • /
    • 2010
  • Recently, thanks to advanced computational power and numerical techniques, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation which are frequently encounterd in fluid-structure interaction and/of six degree-of-freedom problems. There are several moving mesh techniques such as the Laplacian operator based, tension spring based and elastic deformation based methods. In the present study, the Laplacian operator based method was utilized and the results were validated. For the validation, the flow around an oscillating two-dimensional cylinder was simulated and analyzed.

  • PDF

Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder (유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석)

  • Lee, Hee-Bum;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Moving Mesh Application for Thermal-Hydraulic Analysis in Cable-In-Conduit-Conductors of KSTAR Superconducting Magnet

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Keeman;Jinliang He
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.522-531
    • /
    • 2002
  • In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.