• Title/Summary/Keyword: Moving boundary

Search Result 580, Processing Time 0.027 seconds

A Numerical Study of the Effect of Small Passenger Car's Grille Shape on the Aerodynamic Performance (소형 승용 차량의 그릴 형상이 차량의 공력 성능에 미치는 영향에 관한 수치해석 연구)

  • Kim, Jaemin;Cho, Hyeongkyu;Kim, Taekgi;Kim, Moonsang;Kim, Yongsuk;Kim, Yongnyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.74-87
    • /
    • 2015
  • A numerical parametric study has been accomplished to figure out the effect of grille shape built in a small passenger car on the aerodynamic performance such as drag and mass flow rate through CRFM(Condenser Radiator Fan Module). Three grille opening parameters and three grille mesh parameters are selected and adopted to a simple shape passenger car model. This research will provide a design guideline for grille opening geometry and mesh shape in the grille. FLUENT, which is very well known commercial code, hires k-${\epsilon}$ turbulence model at the driving speed of 110km/h with moving wall boundary condition. A porous media condition is prepared to estimate the pressure drop amount through CRFM parts.

The Flow Field Structure of Jet-in-Cross Flow through the Perforated Damage Hole (관통 손상 구멍으로부터의 제트-교차 흐름의 유동장 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.551-559
    • /
    • 2014
  • The influence of the battle damage hole on the velocity and vorticity flow field have been studied by using particle image velocimetry. Time averaged velocity and vorticity vector fields in the vicinity of jet are presented. The perforated damage hole on a wing created from a hit by anti-air artillery was modeled as a 10% chord size hole which positioned at quarter chord. At low angles of attack, the vorticity in the forward side of the jet is cancelled due to mixing with the wing surface boundary layer. Stretching of vorticity in the backside of the jet generates a semi-cylindrical vortical layer that enclosing a domain with slow moving reverse flow. Conversely, at higher the angles of attack, the jet vorticity advected away from the wing surface and remains mostly confined to the jet. The mean flow behind the jet has a wake-like structure.

A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Micro Channel (미소채널 내 회전교반기와 진동교반기에 의한 혼합향상의 연구)

  • An Sang-Joon;Kim Yong-Dae;Maeng Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.430-437
    • /
    • 2006
  • The mixing effect is studied by comparing rotating and oscillating stirrers in the micro channel. The cases of Re=10 to 80 with various stirring speeds are considered to analysis the effect of Re and stirrer speed for the mixing. Under Re=20, the oscillating stirrer represents better mixing rate than the rotating stirrer up to the critical stirrer speed which has a maximum efficiency. Over Re=30, the results of oscillating and rotating stirrer show that the faster the stirrer speed, the higher the mixing effect within the concerned stirrer speed range and the oscillating stirrer keeps the higher mixing rate. It was found that the mixing effect is a function which has an optimum of the Reynolds number and the stirrer speed. The D2Q9 Lattice Boltzmann Method is used due to the merits of calculation for the unsteady flow with moving boundary.

Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method (입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션)

  • Jung, Sung-Jun;Park, Jong-Chun;Lee, Byung-Hyuk;Ryu, Min-Cheol;Kim, Yong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.

Impact onto an Ice Floe

  • Khabakhpasheva, Tatyana;Chen, Yang;Korobkin, Alexander;Maki, Kevin
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.146-162
    • /
    • 2018
  • The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.

Flow and Heat Transfer Analysis of Cooling Water in a Rotating Magnetron Cathode (회전형 마그네트론 음극의 냉각수 유동 및 열전달 해석)

  • Joo, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.3
    • /
    • pp.171-179
    • /
    • 2019
  • We have developed a numerical model to analyze flow dynamics and heat transfer characteristics of the cooling water in a circular rotating magnetron cathode by a moving boundary grid method realized in a commercial multiphysics package, CFD-ACE+. The numerical model is composed of a target, dual mass rotating cathode and cooling water connections. When the inlet and outlet of the cooling water are offset by the same distance from the rotation axis, the temperature at the center is higher by $50^{\circ}C$ at maximum. At 5 mm away from the target surface, the temperature profile showed typical center high characteristic. At heat input of 30 kW, the maximum temperature change of the cooling water hits $6^{\circ}C$ within 0.5 sec under 60 rpm. With a cooling water configuration of center in/edge out, the temperature of the center region of the target gets lowered. Within 100 seconds of plasma operation time, the cooling water temperature keeps getting higher.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

A Study on the Perception of Personal Mobility Vehicle for the Improvement of Pedestrian Environment for the Disabled

  • Lee, Joohyung;Lee, Kyooil
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.124-133
    • /
    • 2021
  • Objective: In order to secure the right to walk for the weak, such as the disabled, this study aims to suggest ways to improve the pedestrian environment by identifying factors that cause obstacles to walking. Design: Data Analysis and Perception Survey. Methods: The questionnaire was conducted separately between users of personal mobility vehicle and non-users. A total of 207 effective questionnaires were collected, and the analysis analyzed the perception of personal mobility vehicle by conducting frequency analysis using SAS 9.4. The survey focused on basic information on respondents, walking conditions, understanding of personal mobility vehicle, awareness of pedestrian space passage and parking, and awareness of the possibility of securing pedestrian rights due to new regulations. Results: First, when moving a pedestrian path by personal mobility vehicle, it shall be limited to less than the walking speed of pedestrians. Second, the parking location of the personal mobility vehicle is located at the boundary of the pedestrian road and the lane. Third, pay a fair price to park in a pedestrian space. Conclusions: It is necessary to improve the system to strengthen the contents of education to take into account the safety of pedestrians in education on how to use personal mobility vehicle.

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF

PID Control of a flexible robot rotating in vertical plane (수직면에서 회전운동을 하는 탄성로봇의 PID 제어)

  • Kang, Junwon;Oh, Chaeyoun;Kim, Kiho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF