• Title/Summary/Keyword: Moving Vehicle Method

Search Result 405, Processing Time 0.031 seconds

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image (어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지)

  • Choi, Yun-Won;Kwon, Kee-Koo;Kim, Jong-Hyo;Na, Kyung-Jin;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range (무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬)

  • Cho, Sung-Wook;Huh, Sung-Sik;Shim, Hyun-Chul;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1115-1123
    • /
    • 2011
  • This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.

A Algorithm-Based Practical Path Planning Considering the Actual Dynamic Behavioural Constraint in Unmanned Underwater Vehicles (무인잠수정의 실제 동역학적 제한을 고려한 A* 알고리즘 기반 현실적 경로계획)

  • Lee, Jaejun;Moon, Ji Hyun;Lee, Ho Jae;Kim, Moon Hwan;Park, Ho Gyu;Kim, Tae Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.170-178
    • /
    • 2017
  • This paper proposes an improved path-planning technique based on the $A^*$ algorithm. The conventional $A^*$ algorithm only considers the optimality of the planned path and sometimes produces a path that an unmanned underwater vehicle (UUV) cannot navigate due to its dynamic constraint such as the limit of the radius of gyration. It is because that the previous method evaluate the moving cost based on the straight distance between nodes. We enhance the conventional method by evaluating the moving cost on the basis of the practically navigable trajectory, which is generated by the waypoint-tracking control of the UUV dynamics. The simulation examples indeed show the effectiveness of the proposed technique.

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.93-101
    • /
    • 2023
  • In this paper, we propose a method of creating a 3D bounding box for an object using a vanishing point to increase the accuracy of object recognition in an image when recognizing an traffic object using a video camera. Recently, when vehicles captured by a traffic video camera is to be detected using artificial intelligence, this 3D bounding box generation algorithm is applied. The vertical vanishing point (VP1) and horizontal vanishing point (VP2) are derived by analyzing the camera installation angle and the direction of the image captured by the camera, and based on this, the moving object in the video subject to analysis is specified. If this algorithm is applied, it is easy to detect object information such as the location, type, and size of the detected object, and when applied to a moving type such as a car, it is tracked to determine the location, coordinates, movement speed, and direction of each object by tracking it. Able to know. As a result of application to actual roads, tracking improved by 10%, in particular, the recognition rate and tracking of shaded areas (extremely small vehicle parts hidden by large cars) improved by 100%, and traffic data analysis accuracy was improved.

Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter (최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소)

  • Eom, Hyeon-Seob;Kim, Ji-Yen;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.

Comparison Study on the Moving Line Optimization in Agricultural Industry using Simulation Tool (시뮬레이션을 활용한 농식품 유통물류 동선최적화 설계방안 비교연구)

  • Park, Mueng-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2015
  • This research is to focus on the method of moving line optimization in Agricultural Industry, especially Garak Wholesale Market Modernization Project, by using simulation tool. As everybody knew, it's very difficult to apply the SCM operation rules in Agricultural Industry, because the standardization system in Agricultural Industry was not completed. The five flow management factors, vehicle moving line management, customer moving line Management, Logistics Device Moving Line Management, Working Person Moving Line Management, Product display moving line management, are needed to be optimized on the basis of standardization rules, and to achieve this will be the good infrastructure to make the Agricultural SCM system. It's very different between the SCM structure of manufacturing industry and logistics industry and the SCM structure of Agricultural Industry, because the SCM in manufacturing is occur in the basis of flow management, on the contrary, the SCM of Agricultural Industry is on the basis of activity management. For these reason, this study is the first approach to apply the simulation method in the part of moving line optimization in Agricultural SCM, and in near future, This study will help all designers and operators to apply the simulation work in the part of agricultural SCM, and we hope that next advanced study will continue by using this study.

Improvement of Tracking Performance of Particle Filter in Low Frame Rate Video (낮은 프레임률 영상에서 파티클 필터의 추적 성능 개선)

  • Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Particle filter algorithm has been proven very successful for non-linear and non-Gaussian estimation problem and thus it has been widely used for object tracking for video signals. If the object moves significantly, particle filter needs very large number of particles to track object and this results high computational cost. In this paper, modified particle filter by adopting motion vector is proposed for tracking vehicle in low frame rate(LPR) video input, which the object moving significantly and randomly between consecutive frames. In the proposed algorithm, motion vector is applied in selection and observe step. The experimental result shows that the proposed particle filter can track vehicle successfully in the case when previous one fails. And it also shows the propose method increases the precision of tracking.

Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis (동적 민감도 해석을 이용한 판토그래프의 동특성 개선)

  • Kim, Jin-Woo;Park, Tong-Jin;Wang, Young-Yong;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

A Study of Walking Guide for the Blind by Tactile Display (촉각제시에 의한 시각장애인 보행안내에 관한 연구)

  • Yoon, Myoung-Jong;Kang, Jeong-Ho;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.