• Title/Summary/Keyword: Moving System

Search Result 4,766, Processing Time 0.037 seconds

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.

Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin (은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가)

  • Park, Yei Jun;Yoo, Ji Young;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.435-446
    • /
    • 2014
  • Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.

A Study on Construction and Utilization Plan of Underground Spatial Information DB for Earthquake Disaster Prevention (지진방재를 위한 지하공간정보 DB 구축 및 활용 방안 연구)

  • Kim, Soogyeom;Jang, Yonggu;Kim, Changkyu;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.49-56
    • /
    • 2013
  • Looking at the changes in the earthquake of 33 years of South Korea, earthquake in the magnitude of 3.0 or stronger have been conducted about nine times a year on average, and the epicenter of the earthquake is moving towards the inland from the coast. As the possibility of earthquakes increase, it is time to require utilization of underground space integrated information for earthquake disaster prevention. But, now the data related to the characterization of the ground and geology in the areas weak against earthquakes is insufficient, so we need to collect new geology and the ground survey data on nationwide scale and have to establish earthquake disaster prevention plans through the joint use of the existing underground space information. In this study, we determined the scope of construction of underground space DB information that is needed for earthquake disaster prevention, presented the construction plan of DB static and dynamic information of underground space. It also suggested the utilization of underground space scheme information for built earthquake disaster prevention. The underground space information for earthquake disaster prevention that was built through determining the scope and constructing, planning the utilization of underground space information is supposed to used as DB of the integrated management system of underground space and steep slopes information for steep slopes and earthquake prevention by Emergency Management Agency.

Design and Implementation of Geographical Handoff System Using GPS Information (GPS정보를 이용한 위치기반 핸드오프 시스템의 설계 및 구현)

  • Han, Seung-Ho;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.33-43
    • /
    • 2010
  • Recently, users want to use real-time multimedia services, such as internet, VoIP, etc., using their IEEE 802.11 wireless lan mobile stations. In order to provide such services, a handoff among access points is essential to support the mobility of a node, in such an wide area. However, the legacy handoff methods of IEEE 802.11 technology are easy to lose connections. Also, the recognition of a disconnection and channel re-searching time make the major delay of the next AP to connect. In addition, because IEEE 802.11 decides the selection of an AP depending only on received signal strength, regardless of a node direction, position, etc., it cannot guarantee a stable bandwidth for communication. Therefore, in order to provide a real-time multimedia service, a node must reduce the disconnection time and needs an appropriate algorithm to support a sufficient communication bandwidth. In this paper, we suggest an algorithm which predicts a handoff point of a moving node by using GPS location information, and guarantees a high transmission bandwidth according to the signal strength and the distance. We implemented the suggested algorithm, and confirmed the superiority of our algorithm by reducing around 3.7ms of the layer-2 disconnection time, and guaranteed 24.8% of the communication bandwidth.

A Study of Rayleigh Damping Effect on Dynamic Crack Propagation Analysis using MLS Difference Method (MLS 차분법을 활용한 동적 균열전파해석의 Rayleigh 감쇠영향 분석)

  • Kim, Kyeong-Hwan;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.583-590
    • /
    • 2016
  • This paper presents a dynamic crack propagation algorithm with Rayleigh damping effect based on the MLS(Moving Least Squares) Difference Method. Dynamic equilibrium equation and constitutive equation are derived by considering Rayliegh damping and governing equations are discretized by the MLS derivative approximation; the proportional damping, which has not been properly treated in the conventional strong formulations, was implemented in both the equilibrium equation and constitutive equation. Dynamic equilibrium equation including time relevant terms is integrated by the Central Difference Method and the discrete equations are simplified by lagging the velocity one step behind. A geometrical feature of crack is modeled by imposing the traction-free condition onto the nodes placed at crack surfaces and the effect of movement and addition of the nodes at every time step due to crack growth is appropriately reflected on the construction of total system. The robustness of the proposed numerical algorithm was proved by simulating single and multiple crack growth problems and the effect of proportional damping on the dynamic crack propagation analysis was effectively demonstrated.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

A Feasibility Study on the Prediction of the Target in the Lung from the Skin Motion - Animal Study (피부의 움직임을 이용한 표적의 위치 추정에 관한 가능성 연구 - 동물 실험)

  • 서예린;이병용;신승애;김종훈;안승도;이상욱;최은경
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.163-168
    • /
    • 2002
  • As for planning the radiation therapy for the tumor in the lung, inferring the motion of the organ or target due to the respiration from the motion of the skin was performed as the feasibility study with the animal. The dog weighed 20 kg was chosen for the experiment. The system, which can use the fluoroscopy and the CCD camera synchronously, was designed. With a radio-opaque marker on the skin of the dog, which indicates the lower lobe of the lung, the images of the motions for the lung were recorded in the A/P (anterior-to-posterior) and lateral view. At the same time, the images of the skin motions from CCD camera were also recorded. Skin moves periodically with the amplitude of 6 mm and the target in the lung made almost the same frequencies during its motion's amplitude of 15 mm and its direction change with the respiration. Therefore analyzed results showed strong correlation between the skin motion and the organ motion on the average of 0.85. This study indicated that the prediction of a target position in the lung, which is moving organ, is possible. For the animal study, predicting the exact target motion from the skin motion was possible and it can have the feasibility to apply to the patient clinically.

  • PDF

Visibility of Internal Target Volume of Dynamic Tumors in Free-breathing Cone-beam Computed Tomography for Image Guided Radiation Therapy

  • Kauweloa, Kevin I.;Park, Justin C.;Sandhu, Ajay;Pawlicki, Todd;Song, Bongyong;Song, William Y.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.220-229
    • /
    • 2013
  • Respiratory-induced dynamic tumors render free-breathing cone-beam computed tomography (FBCBCT) images with motion artifacts complicating the task of quantifying the internal target volume (ITV). The purpose of this paper is to study the visibility of the revealed ITV when the imaging dose parameters, such as the kVp and mAs, are varied. The $Trilogy^{TM}$ linear accelerator with an On-Board Imaging ($OBI^{TM}$) system was used to acquire low-imaging-dose-mode (LIDM: 110 kVp, 20 mA, 20 ms/frame) and high-imaging-dose-mode (HIDM: 125 kVp, 80 mA, 25 ms/frame) FBCBCT images of a 3-cm diameter sphere (density=0.855 $g/cm^3$) moving in accordance to various sinusoidal breathing patterns, each with an unique inhalation-to-exhalation (I/E) ratio, amplitude, and period. In terms of image ITV contrast, there was a small overall average change of the ITV contrast when going from HIDM to LIDM of $6.5{\pm}5.1%$ for all breathing patterns. As for the ITV visible volume measurements, there was an insignificant difference between the ITV of both the LIDM- and HIDM-FBCBCT images with an average difference of $0.5{\pm}0.5%$, for all cases, despite the large difference in the imaging dose (approximately five-fold difference of ~0.8 and 4 cGy/scan). That indicates that the ITV visibility is not very sensitive to changes in imaging dose. However, both of the FBCBCT consistently underestimated the true ITV dimensions by up to 34.8% irrespective of the imaging dose mode due to significant motion artifacts, and thus, this imaging technique is not adequate to accurately visualize the ITV for image guidance. Due to the insignificant impact of imaging dose on ITV visibility, a plausible, alternative strategy would be to acquire more X-ray projections at the LIDM setting to allow 4DCBCT imaging to better define the ITV, and at the same time, maintain a reasonable imaging dose, i.e., comparable to a single HIDM-FBCBCT scan.

A Study on Succeeding Together-Busan North & New Port (부산 북항-신항 연계발전 방안)

  • Song, Gye-Eui
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.2
    • /
    • pp.313-331
    • /
    • 2011
  • Due to have been more keen in East-North Asia Hub Port competition, to be accelerated Busan New Port development, and to result to supply excess position, Busan port has been confronted by many problems. Also, as facilities of North Port is old, it is impossible to secure 16m depth of water at North Port, and North Port redevelopment is being, container traffic of North Port is accelerated to shift at New Port. Therefore, it. is time to seek for connection growth plan of succeeding together-Busan North & New Port as soon as possible. Connection growth plan of succeeding together-Busan North & New Port is focused, as follows. First, it is required to set up model for connection growth plan of succeeding together-Busan North & New Port. It is valid to specialize for ULCC, to promote to global port at New Port, and it is effective to focus on feeder service and general cargo handling, and to include most space to North Port redevelopment. Second, through port function reorganization, it is required to create a synergy by port function clustering. Third, through effective connection traffic network expansion for moving T/S cargo effectively, it is required to develop Busan Port for T/S cargo-focused port. Fourth, it is required to develop port hinterland logistics zone for creating container traffic through connection development of New Port-BJFEZ. Finally, it is required to build SCM system for creating container traffic among shipper, carrier, freight forwarder and related institution.

Tiny Pores Observed by New Solar Telescope and Hinode

  • Cho, Kyung-Suk;Bong, Su-Chan;Chae, Jong-Chul;Kim, Yeon-Han;Park, Young-Deuk;Ahn, K.;Katsukawa, Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Our previous study on tiny pores (R < 2") observed by HINODE/Solar Optical Telescope (SOT) revealed that the plasma in the pores at the photosphere is always moving down and the pores are surrounded by the strong downward motions (highly red-shifted) of neighboring granulations. From this study, we speculated that the flow motions above the pore should be related with the motions at the photosphere, since the pore is strong magnetic field region. Meanwhile, SNU and KASI installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To get some clue on the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic islands (SMIs), which have similar magnetic flux with the pores but does not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1) There are upflow motion on the pores and downflow motion on the SMIs. (2) Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMIs. (3) There is oscillating motion above pores and the SMIs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMIs. This is more clearly seen on the other regions of stronger magnetic field. In this talk, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.

  • PDF