• Title/Summary/Keyword: Moving Surface method

Search Result 390, Processing Time 0.025 seconds

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time (검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘)

  • Lee, Chul-Hee;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

Non-Contact Pick-up System for Turning Large Flexible Thin Sheets (대형 유연박판 회전이송용 비접촉 파지시스템 설계)

  • Kim, Joon Hyun;Ahn, Sung Wook;Lee, Se Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.435-442
    • /
    • 2014
  • This paper describes an improved design model that can be used to configure a non-contact pneumatic device to turn a large sheet at the in-line system. For rotational moving in the conveyor system, the conventional method is to turn the system itself. The improved non-contact pick-up system mainly uses 8 pairs of L-shaped latches and 12 swirl type heads. It is positioned above the upward air flow table. This system performs the non-contact gripping and side-edge contact support in the vertical and rotational directions to hold the self-weight of a large flat sheet. A non-contact air head can exert a sufficient gripping ability at 4N lower than the standard working pressure. The side latches support 60% of the lifting force required. Through structural and flow analysis, the working conditions were simultaneously considered in accordance with the deflection and flatness of the glass.

Particle Formation and Growth in Dielectric Barrier Discharge - Photocatalysts Hybrid Process for SO2 Removal (SO2 제거를 위한 유전체 장벽 방전 - 광촉매 복합 공정에서의 입자 형성과 성장)

  • Nasonova, Anna;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.127-132
    • /
    • 2010
  • We analyzed the effects of several process variables on the $SO_2$ removal and particle growth by the dielectric barrier discharge - photocatalysts hybrid process. In this process, $SO_2$ was converted into the ammonium sulfate ($(NH_4)_2SO_4$) particles. The size and crystallinity of ammonium sulfate particles were examined by using TEM and XRD analysis. The dielectric barrier discharge reactor consisted of two zones: the first is for plasma generation and the second is for ammonium sulfate particles formation and growth. The first zone of reactor was filled with glass beads as a dielectric material. To enhance $SO_2$ removal process, the $TiO_2$ photocatalysts were coated on glass beads by dip-coating method. As the voltage applied to the plasma reactor or the pulse frequency of applied voltage increases, the $SO_2$ removal efficiency increases. Also as the initial concentration of $SO_2$ decreases or as the residence time increases, the $SO_2$ removal efficiency increases. $(NH_4)_2SO_4$ particles continue to grow by particle coagulation and surface reaction, moving inside the reactor. Larger particles in site are produced according to the increase of residence time or $SO_2$ concentrations.

  • PDF

Numerical Study on the Ocean Sequestration of Liquid $CO_2$ (액체 이산화탄소 해양 고정화에 대한 수치적 연구)

  • Kim Nam-Jin;Chun Won-Gee;Kim Chong-Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.270-278
    • /
    • 2006
  • The idea of carbon dioxide sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500 m in depth. by fixed pipeline are peformed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

A Study on Organistic Line Extension on Digital Space - Focus on NOX digital space - (디지털 공간에 나타난 선의 유기체적 확장성에 관한 연구 - NOX 디지털 공간을 중심으로 -)

  • Yu, Mi-Yeon;Yoon, Jae-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.148-155
    • /
    • 2008
  • The following research focuses on the formation method of digital space by organistic line extension among various digital formation methods. The paper reflects on the meaning and concept of today's digitalism which enables the application of complex organistic system on space through advanced technology. It also explores the concept of a line in topology which differs in assumptive meaning from traditional Euclidian geometry. The findings of the research are that first, digital space is not optimized, but is a tentative formation in process. A digital space encompasses characteristics such as infinity, possibility, potential, asymmetry, and the force of virtuality such characteristics are expressed through a moving surface constantly changing with direction. Second, a digital space formed by line extension is inseparable and durable since no measurement or dimension is predetermined. Furthermore, its sense of direction and flexibility gives it a feeling of a living organism. Third, a Euclidian methodology called 'NURBS' is being developed to express such a dynamic digital space; this is reflected through three elements, control point, weights, and knots to effectively reflect the characteristics of virtuality. The opportunities of digital space are infinite, and the possibilities of formation methods likewise vast.

Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE (DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화)

  • Kwon, Jun Hwan;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

A Study on the Correlationship between Wearable ECG and Clinical ECG Measurements (웨어러블 심전도 측정과 임상 심전도 측정과의 상관관계에 대한 연구)

  • Lee, Kang-Hwi;Lee, Seong-Su;Kim, Sang-Min;Lee, Hyeok-Jae;Min, Kyoung-Jin;Kang, Hyun-Kyu;Lee, Joo-Hyeon;Kwak, Hwy-Kuen;Ko, Yun-Soo;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1690-1698
    • /
    • 2018
  • Recent advances in ICT technology have transformed many of our daily lives and attracted a lot of attention to personal health. Heart beat measurement that reflects cardiac activities has been used in various fields such as exercise evaluation and psychological state evaluation for a long time, but its utilization method is limited due to its differentiation from clinical electrocardiogram. Therefore, in this study, we could observe the change of the measured signal according to the change of the distance and the position of the measuring electrodes which are non-standard electrode configuration. Based on the electric dipole model of the heart, correlation with clinical electrocardiogram could be confirmed by synthesizing multiple surface potentials measured with a shorter electrode distance than standard one. From the electromagnetic point of view, the distance between the measuring electrodes corresponds to the distance that the electric potential by the cardiac electric dipole moves, and the electric potential measured at the body surface is proportional to the moving distance of the electric potential. Therefore, it is preferable to make the distance between electrodes as long as possible, and to position the measuring electrode close to the ventricle rather than the atrium. In addition, it was found that standard electrocardiographic waveforms could be synthesized by using arithmetic sum of multiple measuring electrodes due to the relationship of electrical dipole vectors, which is obtained by dividing and positioning a plurality of measuring electrodes on a reference electrode line, such as Lead-I, Lead-II direction. Also, we obtained a significant Pearson correlation coefficient ($r=0.9113{\pm}0.0169$) as a result of synthetic experiments on four subjects.