• Title/Summary/Keyword: Moving Surface method

Search Result 390, Processing Time 0.032 seconds

Image Processing Technique for an Automatic Inspection of the Surface Outlook of High Speed Moving Plate. (고속 이동 판재의 자동 외관 검사를 위한 영상처리)

  • 부광석;임성현;조현춘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.219-219
    • /
    • 2000
  • A Plate type pipe is used for heat exchange in radiator of a vehicle. The pipe has several rooms through which water flows and heat is dissipated into outside . In the case that there are small holes, cracks or some scratches on the plate, the radiators lost their functions due to Leakage. This may result in overheating of engine in a car. Thus, we need to perform the entire inspection of the plate type pipe in advance before assembling the radiator. In manufacturing process of the plate type pipe, the productive speed is very high and that may be performed continuously. So, there is no room to perform the outlook inspection by typical image processing techniques. This paper proposes a new method to inspect the outlook surface of the plate type pipe automatically with high speed. Especially, the sequential processing technique of an algorithm which detects defects on the surfaces of the plate type pipe is proposed for line scan camera which captures line image. To evaluate the inspection performance, a series of experiments is performed.

  • PDF

The Effects of Mean-Line Shape on Longitudinal Stablility of a Wing in Ground Effect

  • Kim, Wu-Joan;Shin, Myung-Soo
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations for turbulent flow around a two-dimensional foil section moving ova. a flat surface (roller plate) is solved. The numerical method utilized the finite-difference schemes in collocated grids and the Baldwin-Lomax model is employed for turbulence closure. Calculations are carried out for three foil sections of different mean-line shape with various height ratio. As a foil approaches the bottom surface, the lift is augmented, while there exist some differences in pitching moment due to mean-line shape. It was found that the S-shaped mean line deteriorates lift characteristics but increases pitching moment to restore the designed height.

  • PDF

The Mobile Robot Localizaion Using a Single Sonalr and Cylindrical Beacon (초음파 센서와 실린더형 등대를 이용한 이동 로봇의 위치 추정)

  • 범희락;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.570-574
    • /
    • 1993
  • This paper proposes a new method of estimating the position and heading angle of a mobile robot moving on a flat surface. The proposed localization method utilizes two passive beacons and a single rotating ultrasonic sensor. The passive beacons consist of two cylinders with different diameters and reflect the ultrasonic pulses coming from the sonar sensor mounted on the mobile robot. The geometric parameter set of beacon is acquired from the sonar scan data obtained at a single mobile robot location using a new data processing algorithm. Form this parameter set, the position and heading angle of the mobile robot is determined directly. The performance and validity of the proposed method are evaluated using two beacons and a single sonar sensor attached at the pan-tilt device mounted on a mobile robot, named LCAR, in our laboratory.

  • PDF

Study on the Aerodynamic Characteristics of Wings Flying Over the Nonplanar Ground Surface

  • Han, Cheol-Heui;Lee, Kye-Beom;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Aerodynamic analysis of NACA wings moving with a constant speed over guideways are performed using an indirect boundary element method (potential-based panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. The surfaces over the wing and the guideways are discretized as rectangular panel elements. Constant strength singularities are distributed over the panel elements. The viscous shear layer behind the wing is represented by constant strength dipoles. The unknown strengths of potentials are determined by inverting the aerodynamic influence coefficient matrices constructed by using the no penetration conditions on the surfaces and the Kutta condition at the trailing edge of the wing. The aerodynamic characteristics for the wings flying over nonplanar ground surfaces are investigated for several ground heights.

A VIRTUAL BOUNDARY METHOD FOR SIMULATION OF FLOW OVER SWIMMING STRINGS

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.66-69
    • /
    • 2006
  • In the present study, we propose a virtual boundary method for simulation of massive inextensible flexible strings immersed in viscous fluid flow. The fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A massive inextensible flexible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, inlcuding a hanging string which starts moving under gravity without ambient fluid, a string swimming within a uniform flow and a uniform flow over two side-by side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Preliminary results of a swimming elongated fishlike body will also be presented.

  • PDF

Optimal Design for a Wall-Climbing Robot with Static and Vibration Characteristics (정적 및 진동 특성을 고려한 수직이동 로봇의 최적설계)

  • Ahn, Seok-Hee;Choi, Kook-Jin;Hong, Dae-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.35-42
    • /
    • 2008
  • Most of tasks for vertical surface work in shipyard have been accomplished by human workers. However, such manual work often causes injury to workers, also the production cost becomes high due to increasing individual wage. To cope with the circumstance, shipbuilding companies try to introduce wall-climbing robots for carrying out such kind of tasks. In designing a wall-climbing robot, it is essential to minimize its own weight to improve the performance such as moving speed and power saving. For such purpose. this study proposes a method of optimal design for a wall-climbing robot using a genetic algorithm with multi-objective function. Specifically, the thickness of the robot base is minimized to reduce the weight while maintaining the allowable strength and avoiding the resonance frequencies. The proposed method is applied to the design of a wall-climbing robot, and the result shows that the method is useful at an early design stage.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Inspection of Coin Surface Defects using Multiple Eigen Spaces (다수의 고유 공간을 이용한 주화 표면 품질 진단)

  • Kim, Jae-Min;Ryoo, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.18-25
    • /
    • 2011
  • In a manufacturing process of metal coins, surface defects of coins are manually detected. This paper describes an new method for detecting surface defects of metal coins on a moving conveyor belt using image processing. This method consists of multiple procedures: segmentation of a coin from the background, alignment of the coin to the model, projection of the aligned coin to the best eigen image space, and detection of defects by comparison of the projection error with an adaptive threshold. In these procedures, the alignement and the projection are newly developed in this paper for the detection of coin surface defects. For alignment, we use the histogram of the segmented coin, which converts two-dimensional image alignment to one-dimensional alignment. The projection reduces the intensity variation of the coin image caused by illumination and coin rotation change. For projection, we build multiple eigen image spaces and choose the best eigen space using estimated coin direction. Since each eigen space consists of a small number of eigen image vectors, we can implement the projection in real- time.

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Dynamic Behavior of Vortices Separated from a Pitching Foil (피칭익에서 박리되는 와류의 거동)

  • Yang, Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.152-158
    • /
    • 2007
  • Most of experimental visualizations and numerical results on the flow field separated form a leading edge around an unsteady foil show a continuous streakline from the leading edge and large reverse flow between the streakline and the suction surface. However, they have not exactly clarified yet the dynamic behavior of vortices separated from the leading edge because separation around an unsteady foil is very complicated phenomenon due to many parameters. In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate. Futhermore the vortices moving up to the leading edge on the suction surface of the pitching foil are visualized. They play an important role to balance the number of vortex shedding from both edges.