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A VIRTUAL BOUNDARY METHOD
FOR SIMULATION OF FLOW OVER SWIMMING STRINGS

Wei-Xi Huang' and Hyung Jin Sung~

In the present study, we propose a virtual boundary method for simulation of massive inextensible flexible
strings immersed in viscous fluid flow. The fluid motion is governed by the Navier-Stokes equations and a
momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A
massive inextensible flexible string model is described by another set of equations with an additional momentum
forcing which is a result of the fluid viscosity and the pressure difference across the siring. The momentum forcing
is caleulated by a feedback loop. Simulations of several numerical examples are carried out, inlcuding a hanging
string which starts moving under gravity without ambient fluid, a string swimming within a uniform flow and a
uniform flow over two side-by side strings. The numerical results agree well with the theoretical analysis and
previous experimental observations. Preliminary results of a swimming elongated fishlike body will also be presented.
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1. Introduction

In nature, many phenomena involve ihteractions between the
flexible bodies and their surrounding viscous fluids, such as a
swimming fish or flapping flags. The intrinsic dynamics is
complicate and not well understood. A flexible string can be
regarded as a one-dimesional flag model. Many similarities can
be found between the flapping string and swimming fish,
although the different wake speed results in drag force for the
former and in propulsion force for the latter.

A literature survey reveals that several methods have been
developed for simulating fluid/flexible-body interactions. The
distributed-Lagrange-multiplier/fictitious domain method originally
proposed by Glowinski et al[l], which was based on the finite
element method, has recently been applied to simulate flow over
2D flexible plate[2,3,4). Another one 'is Peskin's immersed
boundary method[5}, which has recently been used to simulate a
flapping string immersed in 2D soap film[6, 7], in order to
compare with the experiment carried out by Zhang et al.[8].

The virtual boundary method was proposed independently by
Goldstein et al.[9] and was then developed by Saiki & Biringen
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[10] and Lee[11]. It shares the same spirit of Pesking's immersed
boundary method, while it uses a feedback forcing to bring the
fluid to rest at solid body surfaces. In the present study, the
virtual boundary method is extended to the fluid/flexible-body
interaction problems.

2. Numerical Methods

2.1 Numerical model
The Navier-Stokes equations for unsteady viscous fluid flow

are
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where ,, denotes the velocity, ; denotes the pressure, p,
denotes the fluid density, ; denotes the dynamic viscosity, and
fa denotes the force exerted by the immersed structure on the

]

fluid.
For an inextensible flexible string, the governing equations are
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where X, denotes the string position, p_ denotes the line 0-2p
density of string, ¢ denotes the stretching coefficient, y denotes 04l
the bending coefficient, g denotes the gravity force, and F, -
denotes the force exerted by fluid on string. Eq.4) is the 06F
constraint of the inextensible condition, which bahaves like the 0.8k
incompressible condition for fluid motion. Using Eq.(4) we can =08/, 1
obtain the poisson equation for g -
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where the first term on the right hand side is left for the
numerical purpose,

Note that Eqs.(3) and (4) are writen in Lagrangian form,
while Egs.(1) and (2) are writen in Eulerian form. The
transformation between these two forms are realized by Dirac
delta function. Here the interaction force F, is simply given by
feedback law

Fib:ﬂJ(U‘Ub)df*B(U'Ub) ‘ ©)

where o and (3 are large negative coefficients, Uis=0X,,/0t:
and pyis the fluid velocity interpolated at the string position

UCs,0= [ ulx,05(X(s,0-x)dx 7

where & is Dirac delta function. Then £ in Eq.(1) is given
by

fi(x,0= [Fip(s,05(x-X(s,0))ds ®

2.2 Computational scheme

The N-S equations are solved by the fractional step method
on a staggered Cartesian grid. The velocity components and
momentum forcings are defined on the staggered grid, whereas
the pressure are applied at the centers of cells. Fully implicit
time advancement is employed, where the Crank-Nicholson
scheme is used for the discretization ofthe diffusion and
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Fig.! A hanging string starts moving under gravity without
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Fig.2 Time history of position of the free end of string

convection terms. Decoupling of the velocity and pressure is
achieved by block LU decomposition in conjunction with
approximate factorization. The pressure Poisson equation is solved
by iteration using the multigrid method. The pressure is then
used to correct the velocity field to satisfy the continuity
equation. No iteration is needed to solve the velocity field.
Details regarding the N-S solver can be found in Kim et al.
[z}

To solve the 1D inextensible string model, Eq.5) is first
solved on a staggered grid to obtain g. Then Eq.(3) is solved to
update the position. It is found that the inextensiblity is well
satisfied without any iteration. More details will be explained in
the presentation.

The interaction force is simply calculated in an explicit form.

3. Numerical Results

3.1 A hanging string without ambient fluid

For small amplitude, Eqs.(3) and (4) can be linearized and
the analytical solution is derived by using Bessel functions.
Figure 1 shows that a hanging string starts moving under gravity
without ambient fluid. The initial position is

Y(s,0)= ks )]
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In the present case, we use k=(0.0ln. The numerical results
agree well with the analytical solution, as shown in Fig.1. Figure
2 shows a time history of the position of the free end of string.
We can see the agreement between numerical simulation and
analytical solution is excellent.

3.2 A hanging string immersed in uniform flow

In Zhang et al's experiment[8], they found that for a hanging
string immersed in flowing soap film, there are two distinct
stable states: the stretched-straight state and the self-sustained
flapping state, depending on its initial situation. In the present
study, simulations of uniform flow over a hanging string are
carried out. Figure 3 shows the instantaneous vorticity contours
of flow over a hanging string with two different initial
Re=200. For k=0.1x(Fig3a),
shedding alternatively due to the flapping string, while for

conditions at votices are

k=0.001n(Fig.3b), the flapping amplitude is decaying and no
vortex is shedding.

(a)

Fig. 3 Instantaneous vorticity contours of flow over a hanging
string at Re=200: () k=0.1%; (b) k=0.001x-

Figure 4 shows the instantaneous vorticity contours at
Re=500 and Re=1000. It can be seen that with increasing
Reynolds number, the vortex size decreases and the number of
vortices shedding during one flapping period increases. At
Re=200, as shown in Fig.3a, the vortex size is comparable
with the string length, and there are a positive and a negative
vortex shedding alternatively. At Re=500(Fig4a), the vortex
size becomes smaller and there are two positive and two
negative vortices shedding during one period, while at pe=1000

(Fig4b), the size is smaller and the number increases to three.
In Zhang et al's experiment[§], the Reynolds number is of the
order of 1% so we can see many fine vortex structures
shedding from the string. In the present simulations, although the
Reynolds numbers are much lower, we can find the tendency

with increasing Reynolds number is consistent with the

experiment.
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Fig.4 Instantaneous vorticity contours of flow over a hanging
string at (a) Re=500; (b)Re=1000

3.3 a uniform flow over two side-by side strings
The hydrodynamically coupled
side-by-side strings are more complicated. Zhang et al.[8] found

that the two strings tended to flap in phase with each other if

interaction between two

_ the inter distance is sufficiently small, while as the distance

increases, the strings switched to become locked in out-of-phase
and flapped symmetrically about the center line.

Numerical simulations of this problem are carried out in the
present study. Figure 5 shows the instantaneous vorticity contours
for the inter distance of (.17 at y=17.1 and 180. We can see
that the two strings are locked in phase and flap parallel to each
other. Figure 6 shows the instantancous vorticity contours for the
inter distance of 7 at (=27 ¢ and 285. It is interesting to find

‘that although the initial status is parallel to each other, the two

strings are finally locked out-of-phase and flap symmetrically
about the center line. All these properties agree well with the
experimental findings.
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Fig.5 Instantaneous vorticity contours of flow over two
side-by-side strings with inter distance of (17 at (a)
t=17.1 and (b)¢=18.0-

4, Conclusions

In the present study, we propose a virtual boundary method
for simulation of flow over massive inextensible flexible strings.
The fluid motion is governed by the Navier-Stokes equations and
a momentum forcing is added in order to bring the fluid to
move at the same velocity with the immersed surface. A massive
inextensible flexible string model is described by another set of
equations with an additional momentum forcing which is a result
of the fluid viscosity and the pressure difference across the
string. The momentum forcing is calculated by a feedback loop.
Simulations of several numerical examples are carried out. A
hanging string which starts moving under gravity without ambient
fluid is simulated and the analytical solution of motion with
small amplitude is also obtained by the perturbation technology.
The agreement of the numerical and analytical solution is
excellent. A hanging string swimming within a uniform flow is
then studied. Two distinct stable states (stretched-straight or
self-sustained flapping) are observed, agreeing with the
experimental results. Simulation of a uniform flow over two
side-by-side strings is also carried out for comparison with the
experiments. In-phase flapping is observed at small spacing
between the two strings, while anti-phase flapping is resulted at
large spacing. Further simulations regarding a swimming fish is
under consideration.
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Fig.6 Instantaneous vorticity contours of flow over two
side-by-side strings with inter distance of [ at (a)
t=27.6 and (b);=28.5.
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