• Title/Summary/Keyword: Moving Mechanism

Search Result 507, Processing Time 0.033 seconds

Unsteady Staging Plow Analysis Using Moving Grid (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.182-185
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of prebody and aftbody with flow analysis using Chimera grid scheme which is usually used for moving simulations. As a result, separation mechanism using forward jet well works in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

  • PDF

A Study on the Slippage between a Moving Web and a Roller (이송중인 웹과 롤러의 슬립에 관한 연구)

  • Kwon, Soon-Oh;Shin, Kee-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1542-1547
    • /
    • 2003
  • Air entrainment can become a significant problem in a web handling process. The development of air film between a web and an idle roller can cause a reduction of traction and traction coefficient, by which a slip is occurrred. Computational and experimental study was carried out to describe the slippage of an idle roller for given operating conditions, tension and web velocity. An extended mathematical model to find out a slip condition was developed by using the models of air film height, dynamic traction coefficient, and torque balance of a rotational roller. And by using the extended model, a mechanism to define the slippage between the roller and the moving web was suggested. The results of simulation and experiment showed that the extended dynamic model could properly characterize the rotational motion of the idle roller by considering dynamic traction coefficient. By examining the rotational motion of the idle roller with web dynamics(speed), the mechanism to define al slip condition between the roller and the web was found to be effective.

  • PDF

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.

An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism (슬라이딩 메커니즘을 이용한 서비스 로봇의 밸런싱 자세의 안정화에 대한 실험연구)

  • Lee, Seungjun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • This paper presents the analysis and control of the position of the COG (Center of Gravity) for a two-wheel balancing robot. The two-wheel balancing robot is required to maintain balance by driving two wheels only. Since the robot is not exactly symmetrical and its dynamics is changing with respect to moving parts, robust balancing control is difficult. Balancing performance becomes difficult when two arms hold a heavy object since the center of gravity is shifted out of the wheel axis. Novel design of a sliding waist mechanism allows the robot to react against the shift of the COG by moving the whole upper body to compensate for the imbalance of the mass as a counter balancer. To relocate the COG position accurately, the COG is analyzed by force data measured from two force sensors. Then the sliding COG mechanism is utilized to control the sliding waist position. Experimental studies are conducted to confirm the proposed design and method.

A Study on Machining Information Analysis of Disk Cam using Circular Interpolation (원호보간법을 이용한 평면 캠 가공 정보 분석에 관한 연구)

  • Cho, I.Y.;Kim B.J.;Kim J.C.;Shin J.H.;Kwon S.M.;Woo J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1678-1681
    • /
    • 2005
  • The disk cam mechanism cam produce a positive motion with a relatively few components. In the present paper a shape design of cam using the relative velocity method and the machining information analysis using the circular interpolation are introduced. In the first part of the paper a machining information at each point using the circular interpolation is taken. This study purposes the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism..

  • PDF

Development of a Car Door Checker for Reducing Noise in Opening (승용차 도어의 개폐 이음 저감을 위한 도어체커 개발)

  • An, Byeongju;Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Kim, Hyongdon;Shin, Jongil;Seo, Seungwoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.396-401
    • /
    • 2015
  • A door checker holds a car door at several opening angles and limits the maximum door opening, so that the door does not bump against to passengers. Recently, the performance of door checker becomes more important as the feeling of door opening and closing effects on the quality of a car. However, some of door checkers make squealing noise when they are used for ages, which causes consumer's complaints as well as decreasing commercial value of the product. In this study, after various experiments for the noise, we concluded that the major reasons of the noise are acceleration of wearing and loss of lubricant due to impurities in working parts. Therefore, we developed a new mechanism of door checker which can resolve the major reasons of the noise. The developed mechanism is effective to prevent inflow of impurities and loss of lubricant by locating working parts in the case. We also proved that the developed mechanism does not make any noise after the test of 50,000 times of operations.

A study on the lateral Dynamics of the Moving Web Induced by a Tilted Roller (웹 표면 수직방향으로 기우러진 롤에 의한 측 방향 웹 거동에 대한 연구)

  • Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.209-216
    • /
    • 2000
  • The lateral behavior of the moving web is critical to the quality of the web products. The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web. But, the study on the effect of the tilting roller in the direction of the normal to the moving web on the lateral behavior has not been reported in the literature yet. For example, the contact roller often contacts the winding roll in a tilted fashion and causes the lateral motion of the winding web, which induces the offset on the wound roll. The lateral dynamics of the moving web induced by a tilted roller in normal direction of a web is investigated in this paper. The two-dimensional dynamic model developed by Shelton is extended to investigate the effect of a titled roller in a normal direction of the moving web on the lateral motion of the moving web. New boundary conditions are developed to solve the extended model. Computer simulation study proved that the model developed can be used to predict the lateral motion of the moving web ? to a tilted roller in normal direction of the moving web. The lateral deflection is increased exponentially a the tilting angle is increased. As the length of web span is increased, the amount of lateral deflection was increased almost linearly for the same tilting angle. The lateral dynamics turned out to be almost independent to the operating tension. The model developed can be used to solve the offset problem of the staggered winding and also to design a new web guiding mechanism.

  • PDF

Review of A High Precision Actuator Mechanism Using PZT (PZT를 이용한 초정밀 구동의 문헌적 고찰)

  • Choi, H.S.;Lee, J.;Jung, M.C.;Yun, D.W.;Han, C.S.;Hong, W.P.;Kang, E.G.;Choi, H.J.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.524-529
    • /
    • 2004
  • Recently High precision positioning device is used in many kinds of manufacturing and scientific instruments. Piezoelectric transducer is applied to the positioning devive as actuator, PZT has a high resolution, however, moving range is short. Many researcher have developed the mechanism for increasing a motion range. The types of increasing motion range mechanism with PZT are inertial slider, friction driver, ultrasonic motor, etc. In this paper we discuss the review of the hish precision actuator mechanism with PZT. Many kinds of mechanism for high precision are shown and compared.

  • PDF

Implementation of A Spatial 3-DOF Haptic Mechanism (공간형 3 자유도 Haptic 메커니즘의 구현)

  • 이재훈;이수강;이병주;이석희;이정헌;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.312-316
    • /
    • 2004
  • In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.

  • PDF