• 제목/요약/키워드: Moving Least Square

검색결과 125건 처리시간 0.025초

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀 위치제어 (Precision Position Control of PMSM Using Neural Network Disturbance observer and Parameter compensator)

  • 고종선;진달복;이태훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.188-195
    • /
    • 2004
  • This paper presents neural load torque observer that is used to deadbeat load torque observer and gain compensation by parameter estimator As a result, the response of the PMSM(permanent magnet synchronous motor) follows that nominal plant. The load torque compensation method is composed of a neural deadbeat observer To reduce the noise effect, the post-filter implemented by MA(moving average) process, is adopted. The parameter compensator with RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller The parameter estimator is combined with a high performance neural load torque observer to resolve the problems. The neural network is trained in on-line phases and it is composed by a feed forward recall and error back-propagation training. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against the load torque and the Parameter variation. A stability and usefulness are verified by computer simulation and experiment.

대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축 (Database Construction to Compute Representative Model of Load Power Factor in Bulk Power System)

  • 조종만;이효상;이정희;김진오
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.83-89
    • /
    • 2004
  • 최근 전력계통의 대형화와 중조류 설비의 증가 등으로 계통내부에서 소모되는 무효전력 급증에 따라 계통전압관리차원에서 부하역률 관리의 중요성이 새롭게 대두되고 있다. 따라서 본 논문에서는 최소자승법(Least Square Method)을 이용하여 변압기 무효전력 손실량을 산출하였으며, 유량평균법(Average Flow Method)을 사용하여 부하특성에 따른 지역별, 계절별, 시간대별 부하역률 대표모델을 수립하였다.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계 (Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique)

  • 최규선;이갑성;최동훈
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제5권4호
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

반응표면법을 이용한 압축기 루프 파이프의 최적 설계 (Design Optimization of a Compressor Loop Pipe using Response Surface Method)

  • 강정환;박종찬;김좌일;왕세명;정충민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.404-409
    • /
    • 2004
  • A compressor loop pipe is the most important part in a refrigerator from the view of structural vibration and noise. Vibration energy generated from a compressor's inner body is transmitted to the shell and outside through the loop pipe. For this reason it is very important to design a compressor loop pipe. But, for geometrical complexity and dynamic nonlinearity of the loop pipe, analysis and design of the loop pipe is very difficult. So the statistical and experimental methods have to be used for design of this system. The response surface method (RSM) becomes a popular meta-modeling technique f3r the complex system as this loop pipe. As starting point of loop pile's optimization, FEA model and simple experimental model are used instead of the real loop pipe model. After RS model was constructed, using sensitivity-based optimizer performed optimization for the loop pipe. And the moving least square method (MLSM) was applied to reduce the approximation error.

  • PDF

외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀위치 제어 (Precision Position Control of PMSM using Load Torque Observer and Parameter Compensator)

  • 고종선;이태훈
    • 전력전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.42-49
    • /
    • 2004
  • 본 논문은 데드비트 외란 관측기를 사용한 외부 부하 외란 보상과 파라미터 추정기에 의한 보상 이득의 조정을 나타내고 있다. 결론적으로 PMSM의 응답은 지표 시스템을 따른다. 부하 토크 보상 방법은 데드비트 관측기로 구성된다. 노이즈 영향을 감소시키기 위해 MA 처리에 의해 구현된 후단 필터를 적용하였고, RLSM 파라미터 추정기를 가진 파라미터 보상기가 주어진 실제 시스템의 이득 계산시 사용된 파라미터로 가상 동작하여 이득이 오차가 없는 것처럼 동작하게 한다. 제안된 추정기는 문제를 풀기 위해 고성능 외란 관측기와 조합하여 사용한다. 제안된 제어 시스템은 부하토크와 파라미터 변화에 대해 강인하고 정밀한 시스템이 된다. 이상의 제안된 시스템의 안정성과 유용함이 컴퓨터 시뮬레이션과 실험을 통하여 확인되었다.

Precision Position Control of PMSM using Neural Observer and Parameter Compensator

  • Ko, Jong-Sun;Seo, Young-Ger;Kim, Hyun-Sik
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents neural load torque compensation method which is composed of a deadbeat load torque observer and gains compensation by a parameter estimator. As a result, the response of the PMSM (permanent magnet synchronous motor) obtains better precision position control. To reduce the noise effect, the post-filter is implemented by a MA (moving average) process. The parameter compensator with an RLSM (recursive least square method) parameter estimator is adopted to increase the performance of the load torque observer and main controller. The parameter estimator is combined with a high performance neural load torque observer to resolve problems. The neural network is trained in online phases and it is composed by a feed forward recall and error back-propagation training. During normal operation, the input-output response is sampled and the weighting value is trained multi-times by the error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. As a result, the proposed control system has a robust and precise system against load torque and parameter variation. Stability and usefulness are verified by computer simulation and experiment.

Moving From Traditional to Society 5.0: Case study by Online Transportation Business

  • MASHUR, Razak;GUNAWAN, Bata Ilyas;FITRIANY, FITRIANY;ASHOER, Muhammad;HIDAYAT, Muhammad;ADITYA, Halim Perdana Kusuma Putra
    • 유통과학연구
    • /
    • 제17권9호
    • /
    • pp.93-102
    • /
    • 2019
  • Purpose - Capturing the shifting consumer behavior perspective on online transportation network performance in Indonesia, this study aims to empirically examine the impact of electronic customer relationship management (e-CRM) and e-service quality on customer e-satisfaction and e-loyalty. Research design, data, and methodology - A quantitative approach was applied, and then we determined the respondents who met the predetermined criterion by using purposive sampling method. In total, 167 online transportation customer in Indonesia participated in this electronic questionnaire survey. To tested the collected data, Partial Least Square (PLS) - (SEM) analytical tools were employed. Results and Findings - There are five hypotheses proposed in this study and state that only one hypothesis is rejected, The dominant relationship between variables in the hypothesis is shown in the variable relationship of e-service quality on e-satisfaction. CRM, Service Quality, Satisfaction and Loyalty implemented comprehensively in cyberspace provides a clear picture for academics but also for practitioners who are struggling in the service industry that specifically appoints online transportation business. The findings of this research provide both managerial and theoretical implications to maintain customer e-loyalty in online transportation network business environment in Indonesia.

레이저 간섭계를 이용한 드릴링 머신의 틸트 측정 (Tilt Measurement of Drilling Machine Using the Laser Interferometer)

  • 이승수;손영지;김순경;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.479-484
    • /
    • 1996
  • This paper describes a method of measuring tilt motion. This method measures the tilt motion of drilling machines using a laser interferometer, a simple sliding linear bearing, measurement of the probe and the LSC(least square center) method. The next order of business is discussing the procedure of measurement. First, The measured position is considered to be the point of contact between the drill shank and the probe. The revolution of the drill axis delivers the point of contact to the probe. Second, because the laser interferometer is attached on the sliding linear bearing, any movement of probe influences laser reflector. Thus, the laser program displays the moving factor of laser reflector. Namely, this is tilt factor. Third. the points of measurement are a full circle which has 8 points (each are 45$^{\circ}$), After it is finished measuring the 8 points, let the spindle of the drilling machine move down about 5 cm. Repeating this procedure three times, we can get tilt motion's values which are calculated by LSC method. Many error factors affect the accurate measurement of tilt motion. However in this paper we ignore some error factors because they are less significant than tilt motion.

  • PDF