• Title/Summary/Keyword: Moving Heat Source

Search Result 69, Processing Time 0.027 seconds

Fininte element analysis of electron beam welding considering for moving heat source (이동 열원을 고려한 전자빔 용접의 유한요소해석)

  • Cho, Hae-Yong;Jung, Seok-Young;Kim, Myung-Han;Cho, Chang-Yong;Lee, Je-Hoon;Seo, Jung
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

Study on Temperature Distribution for Various Conditions of Moving Heating Source During Line Heating Process (선상가열시 이동열원 조건에 따른 가열 판재의 온도분포에 관한 연구)

  • Choi, Yoon-Hwan;Lee, Yeon-Won;Choi, Kwang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • Line heating is a manufacture method, which was widely used to machining a curved surface in the ship construction. The qualities using by line heating are very difference compare to the proficiency level of the engineer. So it's mainly depend on the automation equipment instead of the proficiency level engineer. In this study, it would be investigate the temperature distribution of the heating plate, which was used by the automation equipment according to line heating. The main factors are the moving velocity of the heating source, strength and the heating method separately, in temperature distribution while line heating. In this paper, it was investigated the temperature change with the vary of each three variables. The numerical result showed that peak temperature decrease if the moving velocity of the heating source increased. It can also calculate the change quantitatively that the peak temperature and temperature distribution changed linearly with the vary of the heating source.

Analysis on the three-dimensional unstationary heat conduciton on the welding of thick plate by F. E. M. (有限要素法에 依한 厚板熔接時의 3次元 非定常熱傳導解析)

  • 방한서;김유철
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.37-43
    • /
    • 1991
  • In order to analyze the mechanical phenomena of three dimensional elato-plastic behavior caused by welding of thick plate, it is necessary to solve exactly the three dimensional unstationary heat conduction problem considering the moving effect of heat source and the temperature-dependence of material properties. In this paper, the three-dimensional unstationary heat conduction problem is formulated by using an isoparametric finite element method. Thereafter, the transient temperature distributions, according to time, of thick plate during welding are defined from the results calculated by the developed computer program.

  • PDF

A Study on the Characteristics of Heat Distribution of Welded Joint on the Steel Structure with Thick Plate (厚板 鋼構造物 熔接이음부의 熱分布 特性에 關한 硏究)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.138-144
    • /
    • 1995
  • Recently, as the industrial structure tends to become large, the thickness of structural plate becomes thicker. Therefore, the thicker the plate of welded structure is, the larger the shape of welded joint. The effect of large heat input makes large heat affected zone(HAZ). These bring to complict welding residual stress and to weaken material, which may cause extremely harm to the safety of structures. Nevertheless, welding is design is regulated by the KS, JIS or standard in the resister of shipping such as KR, ABS or LR. However, these rules are based on rather experimental than theoretical. In this study, the computer program of heat conduction, considering un-steady state and quasi-steady state, is developed for optimizing(minimizing) a shape of welded joint. The characteristics of heat on the welded joints with various shapes are clarified by the results of the analyses.

  • PDF

Thermal Stresses due to a Heat Source Moving Crosswise on a Finite Breadth Plate (유한폭평판(有限幅平板)에서 폭방향(幅方向)으로 이동(移動)하는 열원(熱源)으로 인(因)한 열응력(熱應力))

  • J.E.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.59-75
    • /
    • 1975
  • The thermal stresses due to a heat source moving crosswise on a finite breadth plate, which is much more like to the practical welding problems, were studied. The temperature distributions in the plate were obtained analytically using the mirror image method, and the thermal stresses were calculated by the finite-difference method. Some numerical calculations for temperature distributions and thermal stresses were performed. The temperature distributions were also obtained by experiment. It was found that the theory was in good agreement with the result of experiment, and the calculated thermal stresses were resonable.

  • PDF

Temperature Field and Thermal Stress Simulation of Solid Brake Disc Based on Three-dimensional Model (3차원 브레이크 디스크 모델의 온도 분포와 열응력 시뮬레이션에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The brake system is an important part of the automobile safety system. The disc brake system is divided into two parts: a rotating axi-symmetrical disc, and the stationary pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperatures during the braking process. The frictional heat source (the pads) is moving on the disc and the location is time-dependent. Our study applies a moving heat source, which is defined by the time and space variable on the frictional surface, in order to simulate the frictional heat behavior accurately during the braking process. The object of the present work is the determination of the temperature distribution and thermal stress in the solid disc by non-axisymmetric 3D modeling for repeated braking.

A Study on Cutting Mechanism and Heat Transfer Analysis in Laser Cutting Process (FDM을 이용한 레이저 절단 공정에서의 절단 메카니즘 및 절단폭의 해석)

  • 박준홍;한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2418-2425
    • /
    • 1993
  • A two-dimensional transient heat transfer model for reactive gas assisted laser cutting process with a moving Gaussian heat source is developed using a numerical finite difference technique. The kerf width, melting front shape and temperature distribution were calculated by using the boundary-fitted coordinate system to handle the ejection of workpiece material and heat input from reaction and evaporation. An analytical solution for cutting front movement was adopted and numerical simulation was performed to calculate the temperature distribution and melting front thickness. To calculate the moving velocity of cutting front, the normal distribution of the cutting gas velocity was used. The kerf width was revealed to be dependent on the cutting velocity, laser power and cutting gas velocity.

Finite Element Analysis for Prediction of Bead Shape of Nd:YAG Laser Fillet Welding (Nd:YAG 레이저 필렛 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Lee, Jae-Roon;Suh, Jeong;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.839-846
    • /
    • 2007
  • Nd:YAG pulse laser fillet welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Full model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of fillet welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

Numerical Investigation on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재 시 구난역 내의 연기거동에 대한 수치해석 연구)

  • Hong, Sa-Hoon;Ryou, Hong-Sun;Lee, Seong-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1740-1746
    • /
    • 2008
  • The present study performed numerical investigation to analyze the smoke behavior in the rescue station by using the commercial CFD code (FLUENT Ver 6.3). The present study adopted a 10MW ultrafast mode for simulation, and it also used the MVHS(Modify Volumetric Heat Source) model modified from the original VHS(Volumetric Heat Source) model in order to treat the product generation and the oxygen consumption under the stoichiometric state. In addition, the present simulation includes the species conservation equation for the materialization of heat source and the estimation of smoke movement. From the results, the smoke flows are moving along the ceiling because of thermal buoyancy force and as time goes, the smoke gradually moves downward at the vicinity of the entrance. Moreover, without using ventilation, it is found that the smoke flows no longer spread across the cross-passages because the pressure in the non-accident tunnel is higher than that in the accident tunnel.

  • PDF