• Title/Summary/Keyword: Moving Force

Search Result 809, Processing Time 0.027 seconds

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Characteristic Analysis of a Linear Induction Motor According to Various Positions of the Moving Cage-type Secondary (유한길이의 농형 2차측을 갖는 선형유도전동기의 2차측 이동 위치에 따른 특성 해석)

  • Park, Seung-Chan;Kim, Byung-Tack
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.583-585
    • /
    • 2002
  • In this paper. the characteristics of a linear induction motor with the moving cage-type secondary are analyzed using finite element method. Thus thrust. normal force and the secondary bar currents distribution are obtained for different positions of the moving secondary.

  • PDF

Dynamic Response Analysis of Stiffened Plates Subjected Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The dynamic response of stiffened rectangular plate subjected to a concentrated force or mass moving at constant speed is analyzed by using finite- element method. Stiffened plates are modelled as an assembly of isotropic thin plate elements and equivalent Euler beam ones, in which the beam elements represent the stiffener effects concentrated at the attached lines of stiffeners to the plates. The Newmark's time integration method is used to obtain the dynamic response of stiffened plates. Numerical examples are given to verify the validity of the presented method and also to investigate the effects of speed and moving mass on the dynamic characteristics of stiffened plates.

  • PDF

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

Vibration Analysis of a Moving Mass Travelling on the Timoshenko Rotating Shaft (티모센코 회전축을 따라 움직이는 질량의 진동해석)

  • Park, Yong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.859-864
    • /
    • 2008
  • The dynamic interaction between the moving mass and the rotating Timoshenko shaft is investigated. The moving speed of the mass is presented by a constraint equation related to the rotating speed of the shaft. The dimensionless equations of motion for the rotating shaft with a moving mass by using the Timoshenko's beam theory. The dynamic responses of this system are studied. influences of dimensionless parameters such as the rotating speed ratio. the Rayleigh coefficient and the dimensionless axial force are discussed on the transient response and the maximum deflection of the moving system.

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

Dynamic behavior of moving Elastic Body System on Simple Beam with Axial Load (축하중을 고려한 단순보상의 이동탄성계의 진동해석)

  • 김영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.67-73
    • /
    • 2000
  • The dynamic behavior of a moving elastic body system with three constant velocitics on a simple beam with an axial load is analyzed by numerical method. A moving elastic body system is composed of an elastic body and a suspension unit with two unsprung masses. The governing equations are derived with an aid of Lagrange's equation. These equation are solved by Runge-Kutta method. The damping coefficients a spring constants of the suspension unit the force circular frequency on a moving elastic body the velocity of a moving elastic body system. These effects are more important in the high modes of a simple beam.

  • PDF