• Title/Summary/Keyword: Movie Revenue Forecast

Search Result 2, Processing Time 0.014 seconds

Movie attendance and sales forecast model through big data analysis (빅데이터 분석을 통한 영화 관객수, 매출액 예측 모델)

  • Lee, Eung-hwan;Yu, Jong-Pil
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • In the 100-year history of Korean films, Korean films have grown to more than 100 million viewers every year since 2012, and their total sales are estimated at 1 trillion. It is assumed that the influence on the popularity of Korean movies is related to 2012, when 60% of smartphone penetration rate and 30 million subscribers exceeded. As a result, before and after 2012, changes in movie boxing factor variables were needed, and the prediction model trained as a new independent variable was applied to actual data.

  • PDF

An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning (소셜 빅데이터 분석과 기계학습을 이용한 영화흥행예측 기법의 실험적 평가)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2017
  • With increased interest in the fourth industrial revolution represented by artificial intelligence, it has been very active to utilize bigdata and machine learning techniques in almost areas of society. Also, such activities have been realized by development of forecasting systems in various applications. Especially in the movie industry, there have been numerous attempts to predict whether they would be success or not. In the past, most of studies considered only the static factors in the process of prediction, but recently, several efforts are tried to utilize realtime social bigdata produced in SNS. In this paper, we propose the prediction technique utilizing various feedback information such as news articles, blogs and reviews as well as static factors of movies. Additionally, we also experimentally evaluate whether the proposed technique could precisely forecast their revenue targeting on the relatively successful movies.