• Title/Summary/Keyword: Movement Velocity

Search Result 898, Processing Time 0.03 seconds

Mechanical Properties of Unilateral & Bilateral Movement in Isokinetic Knee Extension and Flexion (등속성 무릎 굴곡과 신전 시 외측 및 양측운동의 역학적 특성)

  • Kim, Yong-Woon;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2008
  • Y. W. KIM, Y. J. KIM, Mechanical Properties of Unilateral & Bilateral Movements in Isokinetic Knee Extension and Flexion. Korean Journal of Sport Biomechanics, Vol. 18, No. 3, pp. 83-92, 2008. The purpose of this study was to examine the mechanical properties and patterns of bilateral and unilateral movement under varying velocities and movement patterns. The unilateral and bilateral isokinetic knee extension and flexion were taken for three speeds of 13 healthy male subjects. Although there was bilateral facilitation at the speed of $450^{\circ}$/s for the bilateral movement of knee extension, as a whole there was less resultant torque and power of bilateral movement than summed unilateral under knee flexion and extension of 3 velocity condition. There was significant correlations between bilateral deficits within individuals observed for an the same movement($120^{\circ}-240^{\circ}$ flexion, $120-240^{\circ}$ extension, $240^{\circ}-450^{\circ}$ extension), which means that same agonist was recruited. On the contrary, although there was a tendency of a similar pattern of the individuals bilateral deficit according to the varying velocities, there was not a significant correlations between bilateral deficits of flexion and extension within individual, which means that different agonist was recruited. With the analyses of this results the individuals neuromuscular characteristics and the effecting factors for bilateral movement can be speculated upon.

Comparative Analyses on Kinematic Variables of Women's Pole Vault Competition at IAAF World Championships Daegu 2011 (2011 대구 세계육상선수권대회 여자 장대높이뛰기 경기 참가선수 경기기술의 운동학적 요인 비교분석)

  • Choi, Kyoo-Jeong;Yi, Kyung-Ok;Kim, Nam-Hee;Kang, Ji-Eun;Kim, Hye-Lim;Moon, Je-Heon;Jung, Bum-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.189-200
    • /
    • 2013
  • The purpose of this study was to compare the kinematic analyses of the women's pole vault skills difference between skilled group (1st to 8th place) and less skilled group (10th to 15th place) who participated in IAAF World Championships Daegu 2011. To achieve this goal, 16 women's pole vault player's kinematic analyses was conducted. Player's best performance was recorded by five normal video cameras operating at 60 Hz. The results of this study through the research procedures above are as follows. First, Skilled group's average step length and the ratio of step length to her height were longer than less skilled's group in run-up phase. Second, Skilled group's horizontal velocity was faster than less Skilled group's results. And pole plant angle was lower than less Skilled group's results in take-off phase. Third, Maximum pole flexion angle did not show difference of between two groups in pole bending phase. However, Skilled group's vertical velocity was higher than less skilled group's results.

Prosodic Boundary Effects on the V-to-V Lingual Movement in Korean

  • Cho, Tae-Hong;Yoon, Yeo-Min;Kim, Sa-Hyang
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.101-113
    • /
    • 2010
  • The present study investigated how the kinematics of the /a/-to-/i/ tongue movement in Korean would be influenced by prosodic boundary. The /a/-to-/i/ sequence was used as 'transboundary' test materials which occurred across a prosodic boundary as in /ilnjəʃ$^h$a/ # / minsakwae/ ('일년차#민사과에' 'the first year worker' # 'dept. of civil affairs'). It also tested whether the V-to-V tongue movement would be further influenced by its syllable structure with /m/ which was placed either in the coda condition (/am#i/) or in the onset condition (/a#mi). Results of an EMA (Electromagnetic Articulagraphy) study showed that kinematical parameters such as the movement distance (displacement), the movement duration, and the movement velocity (speed) all varied as a function of the boundary strength, showing an articulatory strengthening pattern of a "larger, longer and faster" movement. Interestingly, however, the larger, longer and faster pattern associated with boundary marking in Korean has often been observed with stress (prominence) marking in English. It was proposed that language-specific prosodic systems induce different ways in which phonetics and prosody interact: Korean, as a language without lexical stress and pitch accent, has more degree of freedom to express prosodic strengthening, while languages such as English have constraints, so that some strengthening patterns are reserved for lexical stress. The V-to-V tongue movement was also found to be influenced by the intervening consonant /m/'s syllable affiliation, showing a more preboundary lengthening of the tongue movement when /m/ was part of the preboundary syllable (/am#i/). The results, together, show that the fine-grained phonetic details do not simply arise as low-level physical phenomena, but reflect higher-level linguistic structures, such as syllable and prosodic structures. It was also discussed how the boundary-induced kinematic patterns could be accounted for in terms of the task dynamic model and the theory of the prosodic gesture ($\pi$-gesture).

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Prediction of Air Movement and Temperature Distribution at Different Store Methods Using 3-D CFD Simulation in Forced-Air Cooling Facility

  • Yang, G.M.;Koh, H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 2002
  • Temperature is the most influential environment parameter which affects the quality change of agricultural products in cold storage. Therefore, it is essential to keep the uniform temperature distribution in the storage room. This study was performed to analyze the air movement and temperature distribution in the forced recirculating cold storage facility and to simulate optimum storage method of green groceries using 3-D CFD(three dimensional computational fluid dynamics) computer simulation which applied the standard $textsc{k}$-$\varepsilon$ turbulence model and FVM(finite volume method). The simulation was validated by the experimental results for onion storage and the simulation model was used to simulate the temperature and velocity distribution in the storage room with reference to the change of storage method such as location of storage, no stores, bulk storage, and pallet storage. In case of no stores, internal airflow was circulated without stagnation and consequently air movement and temperature distribution were uniform. In case of bulk storage, air movement was stagnated so much and temperature distribution of onion was not uniform. Furthermore, the inner temperature of onion roses more than the initial temperature of storage. In case of pallet storage, air movement and temperature distribution of onion were so uniform that the danger of quality change was decreased.

  • PDF

Constraint Operator for the Kinematic Calibration of a Parallel Mechanism

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo;Kwon, Sung-Ha
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • This paper introduces a constraint operator for the kinematic calibration of a parallel mechanism. By adopting the concept of a constraint operator, the movement between two poses is constrained. When the constrained movements are satisfied, the active joint displacements are taken and inputted into the kinematic model to compute the theoretical movements. A cost function is derived by the errors between the theoretical movement and the actual movement. The parameters that minimize the cost function are estimated and substituted into the kinematic model for a kinematic calibration. A single constraint plane is employed as a mechanical fixture to constrain the movement, and three digital indicators are used as the sensing devices to determine whether the constrained movement is satisfied. This calibration system represents an effective, low cost and feasible technique for a parallel mechanism. A calibration algorithm is developed with a constraint operator and implemented on a parallel manipulator constructed for a machining center tool.

Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet (고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구)

  • Lee, Jae-Beom;Seo, Yeong-Seop;Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.

The Comparison of 'Knowledge of Result' and 'Knowledge of Performance' in the Children with Cerebral Palsy

  • Lee, Hye-Young;Lee, In-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.81-84
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the effect of 'knowledge of result' and 'knowledge of performance', two types of extrinsic feedbacks, during the sit-to-stand movement in children with hemiplegic cerebral palsy. Methods: A total of ten children with hemiplegic cerebral palsy (ages 8 to 12 years) were recruited for the study. Subjects with hemiplegic cerebral palsy performed sit-to-stand movement in front of a mirror. Their performance was supervised and revised for normal movement by a pediatric physiotherapist. In the knowledge of the result, subjects performed sit-to-stand using a chair with an armrest in their mind with normal movement. In the knowledge of performance, subjects performed sit-to-stand under verbal instructions. Randomized cross over trials were used in this study. Main outcome measurements were as follows: mediolateral speed, anteroposterior speed, velocity moment, extent in mediolateral direction, extent in anteroposterior direction, and vertical distance of the center of pressure. Results: The mediolateral speed and extent of center of pressure was higher for 'knowledge of performance' in comparison with the other type of extrinsic feedbacks (p<0.05). The other parameters, including anteroposterior speed and extent, and vertical speed of the center of pressure, did not differ between the two types of extrinsic feedbacks (p>0.05). Conclusion: These findings suggested that training in sit-to-stand movement with 'knowledge of result' may result in better use of extrinsic feedback.

Analysis shoulder pain of tennis players and the movement of the scapula in flat serve (테니스 선수의 어깨 통증과 플랫서브 동작의 견갑골 움직임 분석)

  • Park, Jong-Chul;Cha, Jung-Hoon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.393-400
    • /
    • 2020
  • This study used a three-dimensional motion analysis system for 15 elite tennis players (male 8, female7) to identify the relevance of scapula movement to shoulder pain. During the flat serve, the angular velocity and joint moment of scapula anterior/posterior tilt, downward/upward rotation, internal/external rotation were calculated and this was compared between groups. As a result, the maximum angular velocity for the anterior and posterior tilt tended to be higher in control group(CG) than in the shoulder pain group(SPG), and the maximum angular velocity for internal and external rotation in all phases except the follow-through phase was higher than that of CG. The maximum moment for the anterior and posterior tilt in the late coking phase was statistically significantly higher than that of SPG, the joint moment for the downward and upward rotation of the coking phase was statistically significantly lower than that of CG, and the moment for the internal and external rotation, the SPG was found to be lower than that of CG in the whole phases.

Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed (영산강수계의 죽산보에 설치된 어도에서 어류의 이동성 평가)

  • Park, Chan-Seo;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1513-1522
    • /
    • 2014
  • Fish passage asssessments were conducted in the fishway at Juksan Weir, which was constructed as a four-major rivers project in the downstream area of Youngsan-River Watershed. For the research, fish-movements/migrations were analyzed for seven times from April ~ October, 2013 using an approach of fish trap-setting. Fish fauna and compositions were analyzed in the fishway, and seasonal- and diel-movement patterns were analyzed in relation to current velocity in the fishway. Also, abundances of exotic fishes such as bluegill sunfish (Lepomis macrochirus), large-mouth bass (Micropterus salmoides), and white curcian carp (Carassius cuvieri) were monitored in the fishway. Current velocity(n = 18) in the fishway showed large variations ($0.82{\pm}0.63m/s$) depending on the location of the fish trap-setting and this physical factor influenced the fish movements. Fish movements, based on the CPUE of individuals, in the fishway was greater in slower velocity (mean: 0.36 m/s, range: 0.10~1.54 m/s) than faster velocity (mean: 1.51 m/s, range: 0.90~1.90 m/s). Seasonal analysis of fish movements showed that most frequent uses (8 speices and 591 individuals, 66.2% of the total) of the fishway occurred in spring period(i.e., June). Diel movement analysis, in the mean time, showed highest in the time period of 00:00 ~ 3:00 am (7 species and 281 individuals, 20.9% of the total). The efficient managements in the fishway at Juksan Weir are required in relation to the hydrological regime.