• Title/Summary/Keyword: Movement Pattern

Search Result 1,147, Processing Time 0.028 seconds

Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung;Park, Hana;Im, Soo Hyun;Zuccarello, Giuseppe C.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.389-404
    • /
    • 2020
  • Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.

Evaluation of Movement Pattern of Erythroculter erythropterus Inhabit in the Mid-lower Part of Nakdong River Using Acoustic Telemetry (낙동강 중.하류 구간에서 수중 음향측정방식을 이용한 강준치의 이동성 평가)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;In, Dong-Su;Yu, Jae Jeong;Hur, Moonsuk;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • Acoustic telemetry is used to obtain a relatively continuous record of fish movement. This method has several advantages for studying migrating fish populations that are moving from large rivers. The Nakdong River is the longest river in South Korea and the main stream has faced a change, which consists of the installation of the large weirs. In this study, we applied acoustic telemetry to monitor the movement pattern of Erythroculter erythropterus (family Cyprinidae) and identified home range and movement distance in the Nakdong River. A total of fourteen individuals were released at three different locations and around 80 km section from the estuary barrage was investigated. Eight individuals were tagged and released at estuary barrage (N02) utilized up to 15.9 km (home range) upstream from the release site as home range. Four individuals were tagged and released at Samrangjin (N07), most fish moved and stayed within 9.7 km (home range) downstream area, except E12, which did not show any movement. Two individuals were tagged and released at Changnyeong-Haman weir (N10), and all individuals migrated downstream from the release site. Especially, E14 recorded the longest accumulated detected distance, 36.7 km downstream during 32 days after release. There was no correlation identified between movement (accumulated detected distance and home range) and standard length (Spearman rank correlation, p>0.05). Although, this technique could be an available method to monitor behavior and ecology of freshwater fish effectively, increment of number of receivers and tags are required for more detailed results of fish migration.

Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running (앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

Tectonic Movement in the Korean Peninsula (II): A Geomorphological Interpretation of the Spatial Distribution of Earthquakes (한반도의 지반운동 (II): 한반도 지진분포의 지형학적 해석)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.488-505
    • /
    • 2007
  • The purposes of this research are twofold; 1) to verify spatial differences of tectonic movement using the spatial distribution of earthquakes, and 2) to infer mechanisms that generate spatial accumulation patterns of earthquakes in the Korean Peninsula. The first part of this sequential paper (Park, 2007) argues that the Korean Peninsula consists of four geostructural regions in which tectonic deformation and consequent geomorphological development patterns are different from each other Since this conclusion has been made by terrain analyses alone, it is necessary to verify this suggestion using other independent geophysical data. Because earthquakes are results of movement and deformation of land masses moving in different directions, the distribution of earthquake epicenters may be used to identify the direction and rates of land mass movement. This paper first analysed the spatial distribution of earthquakes using spatial statistics, and then results were compared with the spatial arrangement of geostructural regions. The spatial distribution of earthquakes in the Korean Peninsula can be summarized as the followings; firstly, the intensity of earthquakes shows only weak spatial dependency, and shows large difference even at adjacent regions. Secondly, the epicenter distribution has a clear spatial accumulation pattern, even though the intensity of earthquake shows a random pattern. Thirdly, the high density area of earthquakes shows a clear 'L' shape, passing through Pyeongannam-do, centered at Pyeongyang, and Hwanghae-do, Seosan and Pohang. The correlation coefficient between the density of earthquakes and distance from geostructral region boundaries is much higher than those between the density of fault lines and distance from tectonic division boundaries. Since fault lines and tectonic divisions in the Korean Peninsula are the results of long-term geological development, there is an apparent scale discrepancy to find significant correlations with earthquakes. This result verifies the research hypothesis that the Korean Peninsula is divided into four geostructral regions in which each has its own moving direction and spatial deformation characteristics. The existence of geostructural regions is also supported by the movement parrerns of land masses estimated from the GPS measurements. This conclusion is expected to provide a new perspective to understand the geomorphological developments and the earthquake occurrences in the Korean Peninsula.

An Analytical Study on Strain Distribution Using Strain Gauge Attached On Root Surface (치근 부착 스트레인 게이지를 이용한 응력 분포 분석)

  • Kim, Sang-Cheol;Park, Kyu-Chan
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.325-333
    • /
    • 2001
  • Optimal orthodontic treatment could be possible when a orthodontist can predict and control tooth movement by applying a planned force system to the dentition. The moment to force(M/F) ratio at the bracket, has been shown to be a primary determinate of the pattern of tooth movement. As various n/F ratios are applied to the bracket on the tooth crown, strain distribution in periodontium can be changed, and the center of rotation in tooth movement can be determined. It is, therefore, so important in clinicalorthodontics to know the strain distribution in a force system of a M/F ratio. The purpose of this study was to analyze the strain distribution in orthodontic force system by strain gauge attached to tooth root, and to evaluate the usage of the method. For this study, an experimental upper anterior arch model was constructed, where upper central incisors, on the root surface of which, 8 strain gauges were attached, were implanted In the photoelastic resin, as in the case of 4mm midline diastema. Three types of closing of upper midline diastema closure were compared : 1. with elastomeric chain(100g force) in no arch wire, 2. elastomeric chain in .016“ round steel wire, 3. elastomeric chain in .016”x.022“ rectangular steel wire. The results were as follows. 1. Strain distributions on labial, lingual, mesial and distal root surface of tooth were able to be evaluated with the strain gauge method, and the patterns of tooth rotation were understood by presuming the location of moment arm. 2. Extrusion and tipping movement of tooth was seen in closing in no arch wire, and intrusion and bodily movement was seen with steel arch wire inserted.

  • PDF

Analysis of Red Tide Movement in the South Sea of Gyeongnam Province Using the GOCI Images of COMS (천리안 위성영상을 이용한 경상남도 남해안해역 적조이동 패턴 분석)

  • Kim, Dong Kyoo;Kim, Mi Song;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Red Tide phenomenon which happens in the southern coast of Korea gives massive damage to the fishermen who run fish farms and thereby a lot of efforts to prevent damage are made from various angles. In particular, red tide monitoring with satellite imagery can make it possible to obtain the occurrence data of red tide throughout the whole areas of the sea, which helps provide important information for establishing the preventive plans of disasters. In this regard, this study selected the South Sea of Gyeongnam Province with a view to suggesting the monitoring results with regard to the spread and reduction of the Red Tide in the middle of the day by using the GOCI Images of COMS. With this intention, it selected the region in the South Sea of Gyeongnam Province. The study results of analysis on the GOCI image data for the years of 2013(Aug. 12) and 2014 (Sep. 11) are as follows: the pattern of the Red Tide in the region of the South Sea occurred in the southern sea area of Geoje-do in the morning. It gradually spread and showed a gradual decline after reaching the top at 1 PM. In addition, in terms of the tide movement in the middle of the day, Red Tide began in the southern sea area and moved to the west, and moved to the east again at noon. It is judged that additional study on many factors such as the characteristics of the future Red-tide organisms, tidal currents, amount of sunshine, and water temperature is needed, but it is estimated that Red Tide movement monitoring with GOCI images would provide very crucial information for predicting the spread and movement of the Red Tide to protect and manage the Red Tide disasters.

The Effect of Safety Education on Accident Proneness Prospect in Preschooler (안전교육이 학령전기 아동의 사고경향 예측에 미치는 효과)

  • Kim Shin Jeong;Lee Jung Eun
    • Child Health Nursing Research
    • /
    • v.6 no.3
    • /
    • pp.372-386
    • /
    • 2000
  • The purpose of this study was to provide basic data on preschool children for accident prevention and improve their health through sound, safe living environment with safety education established through more systematic method. Data were collected from 300 preschoolers(150 preschooler are assigned to experimental group and 150 preschoolers are assigned to control group) from 4 to 6 years old using APP paper test which consists of questions and drawings. To experimental group, safety education were done 4 times within the time of 30 minutes per 1 time using education books, video, OHP, slide. The findings of this study are as follows: 1. There were significant difference in behavioral character between experimental group and control group(χ2=11.690, p= 0.003). So, safety education have effect on the behavioral character of preschooler. 2. In the accident proneness on preschooler between experimental group and control group according to general characteristics, it proved significant difference in the case of accident prevention education were done, movement stability(χ2=8.844, p=0.012) and behavioral character(χ2=6.699, p=0.035), in the case of housing pattern is mixed-type, behavioral character(χ2=10.37, p=0.006), in the case of subjects' age is 4 years old, watchfulness(χ2=9.525, p=0.009), in the case of subjects' age is 5 years old, behavioral character(χ2=7.324, p=0.026), in the case of children's order is second, behavioral character(χ2=14.31, p=0.001), in the case of children's sex is boy, living safety(χ2=7.981, p=0.018), movement speed (χ2=6.661, p=0.036), bihavioral character(χ2=8.837, p=0.012), in the case of children's sex is girl, reasoning power(χ2 =9.78, p=0.008), in the case of childrens have no past accidental experience, behavioral character(χ2=9.862, p=0.007), in the case of nuclear family, movement speed(χ2=6.341, p=0.042) and behavioral character(χ2=9.326, p=0.009), in the case of mothers' age is under thirty behavioral character(χ2=16.40, p=0.000), in the case of mothers' school career is under high school graduate, behavioral character(χ2 =8.375, p=0.015), in the case of mothers' school career is beyond college graduate, reasoning power(χ2=9.803, p=0.007) and behavioral character(χ2=6.205, p=0.045), in the case of mothers' job is part time, movement speed(χ2=10.99, p=0.004), in the case of mothers have no job, movement stability(χ2=8.490, p=0.014) and behavioral character(χ2=10.11, p=0.006). The difference of accident proneness between experimental group and control group according to general characteristics, it also showed that there were significant difference in behavioral character compared to other area.. From this findings, we can guess that safety education change and guide preschoolers' behavioral character to desirable direction.

  • PDF

Human-Computer Interface using sEMG according to the Number of Electrodes (전극 개수에 따른 근전도 기반 휴먼-컴퓨터 인터페이스의 정확도에 대한 연구)

  • Lee, Seulbi;Chee, Youngjoon
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • NUI (Natural User Interface) system interprets the user's natural movement or the signals from human body to the machine. sEMG (surface electromyogram) can be observed when there is any effort in muscle even without actual movement, which is impossible with camera and accelerometer based NUI system. In sEMG based movement recognition system, the minimal number of electrodes is preferred to minimize the inconvenience. We analyzed the decrease in recognition accuracy as decreasing the number of electrodes. For the four kinds of movement intention without movement, extension (up), flexion (down), abduction (right), and adduction (left), the multilayer perceptron classifier was used with the features of RMS (Root Mean Square) from sEMG. The classification accuracy was 91.9% in four channels, 87.0% in three channels, and 78.9% in two channels. To increase the accuracy in two channels of sEMG, RMSs from previous time epoch (50-200 ms) were used in addition. With the RMSs from 150 ms, the accuracy was increased from 78.9% to 83.6%. The decrease in accuracy with minimal number of electrodes could be compensated partly by utilizing more features in previous RMSs.

Predicting The Direction of The Daily KOSPI Movement Using Neural Networks For ETF Trades (신경회로망을 이용한 일별 KOSPI 이동 방향 예측에 의한 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.

Design of Parallel Input Pattern and Synchronization Method for Multimodal Interaction (멀티모달 인터랙션을 위한 사용자 병렬 모달리티 입력방식 및 입력 동기화 방법 설계)

  • Im, Mi-Jeong;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.135-146
    • /
    • 2006
  • Multimodal interfaces are recognition-based technologies that interpret and encode hand gestures, eye-gaze, movement pattern, speech, physical location and other natural human behaviors. Modality is the type of communication channel used for interaction. It also covers the way an idea is expressed or perceived, or the manner in which an action is performed. Multimodal Interfaces are the technologies that constitute multimodal interaction processes which occur consciously or unconsciously while communicating between human and computer. So input/output forms of multimodal interfaces assume different aspects from existing ones. Moreover, different people show different cognitive styles and individual preferences play a role in the selection of one input mode over another. Therefore to develop an effective design of multimodal user interfaces, input/output structure need to be formulated through the research of human cognition. This paper analyzes the characteristics of each human modality and suggests combination types of modalities, dual-coding for formulating multimodal interaction. Then it designs multimodal language and input synchronization method according to the granularity of input synchronization. To effectively guide the development of next-generation multimodal interfaces, substantially cognitive modeling will be needed to understand the temporal and semantic relations between different modalities, their joint functionality, and their overall potential for supporting computation in different forms. This paper is expected that it can show multimodal interface designers how to organize and integrate human input modalities while interacting with multimodal interfaces.