• 제목/요약/키워드: Mouse oocytes

검색결과 280건 처리시간 0.026초

생쥐 초기배아와 사람의 수정란의 발생에 미치는 생식수관 상피세포의 영향에 관한 연구 (The Effects of the Epithelial Cells of Genital Tract on the Development of Mouse Early Embryos and Human Fertilized Oocytes)

  • 이호준;변혜경;김정욱;황정혜;전종영;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제21권3호
    • /
    • pp.315-323
    • /
    • 1994
  • Mammalian oviductal epithelial cells have been known to improve in vitro fertilization and embryonic development. Recently, co-cultured human embryos with the epithelial cells in human genital tract has been reported to improve the pregnancy rate. The purpose of the study was to investigate the effects of the epithelial cells of human genital tract on the development of mouse early embryos and human fertilized oocytes. The epithelial cells of human genital tract were collected from the fallopian tubes which were obtained during hysterectomy in fertile women and from the endometrium during endometrium biopsy. Collected human ampullary cells(HACs) and endometrial cells(HECs) were cultured for 10 days to establish primary monolayer. Second passaged HACs and HECs were obtained by trypsinization were cryopreserved in PBS with 1.5 M DMSO for later use. To investigate the effect when co-cultured with HACs and HECs, we tried to apply strict quality control on mouse embryo, from two cell to blastocyst prior to human trial. The results of quality control were as follows; In Group I (Ham's F10 with 10% FCS), Group IT (co-cultured with HACs) and Group ill (co-cultured with HECs), developmental rates to blastocyst were 63.3%(253/400), 76.0%(304/ 400),74.0%(296/400), respectively. Hatching rates were 36.8%(147/400), 41.80/0(167/400), 38.0%(152/400), respectively(p<0.05). To perform the human IVF, cryopreserved HACs were thawed at 37$^{\circ}C$ waterbath, seeded on the well dish and cultured for 48 hI'S. The pronuclear stage embryos were transferred to the seeded well dish. After 24 hRS, co-cultured embryos were examined and transferred to patient's uterus. The results of human IVF when co-cultured with HACs were that fertilization and developmental rates were 61.8% (256/414), 95.3% (244/256) as compared with 57.2% (279/488) and 94.6%(264/279) in Ham's F10 supplemented with 10% FCS(control). However, 62.9% (161/256) of co-cultured human embryos showed good embryos(no or slight fragmentation) as compared with 53.8 % (150/279) in control(p < 0.05). Pregnancy rate was 40.0% (12/30) when co-cultured with HACs whereas 30.6%(11/36) in control. In conclusions, co-culture system using HACs and HECs improved the developmental and hatching rates of mouse embryo. Also, in human IVF system when co-cultured with HACs, it improved both the quality of human embryos and the pregnancy rate.

  • PDF

생쥐 초기 배 발달 동안 변화되는 칼슘과 포타슘 이온 ([ $Ca^{2+}\;and\;K^+$ ] Concentrations Change during Early Embryonic Development in Mouse)

  • 강다원;허창기;최창록;박재용;홍성근;한재희
    • 한국수정란이식학회지
    • /
    • 제21권1호
    • /
    • pp.35-43
    • /
    • 2006
  • 이온 통로 및 이온 농도의 변화는 수정 현상을 포함한 다양한 세포 기능에 중요한 역할을 한다. 그러나 이러한 이온의 변화가 포유동물 배의 발달과정에 어떻게 관여하는지에 대해서는 알려진 바가 적다. 본 연구에서는 생쥐난자가 수정 이후 배 발달 과정을 거치는 동안 나타나는 칼슘과 포타슘 이온의 변화를 전기생리학적 실험 기법과 공초점 현미경을 이용하여 조사하였다. 수정 시에 나타나는 일시적인 세포내 칼슘 농도 변화는 활성 전류(수정 전류)와 함께 동반되었다. 그러나 수정과 같은 극적인 현상이나 자극이 없는 시기에는 세포내 칼슘 농도가 배 발달 시기와 상관없이 일정한 수준으로 유지되었다. 이것은 세포내외의 칼슘 농도의 보상현상으로도 설명할 수 있을 것이다. 배 발달이 진행됨에 따라 난관액의 포타슘 농도는 계속 증가하여 8세포기 배에서는 난자보다 26% 증가하였다. 상실배, 포배기에서는 포타슘 농도가 감소하였다. 배 발달이 진행됨에 따라 주로 포타슘 이온에 의해 조절되는 막 전압은 탈분극되고, 칼슘 이온의 세포 안으로의 유입은 점점 감소하였다. 생쥐 난자에 5 mM의 칼슘을 처리하였을 때 막 전압은 일시적인 과분극 현상을 보이다가 회복되었다. 칼슘 유입에 따른 막 전압 변화에 관여하는 포타슘 통로를 확인하기 위하여 포타슘 통로 차단제를 전 처리한 후 칼슘을 처리한 결과, 칼슘만을 단독으로 처리한 결과와 유의한 차이를 보이지 않았다. 막 전압의 과분극 현상은 잘 알려진 포타슘 통로 차단제인 TEA에 억제되지 않았다. 그리고 small conductance $Ca^{2+}$-activated 포타슘 통로 차단제 인 apamin에 의해서도 억제되지 않았다. 따라서 생쥐 난자에서 과분극을 유발시키는 포타슘 통로는 TEA와 apamin에 억제되지 않는 다른 포타슘 통로로 생각된다. 이상의 결과로부터 배 발달 동안 변화되는 칼슘과 포타슘 이온은 수정 및 초기 배 발달에 중요한 인자로써 작용할 것으로 생각되며, two-pore domain 포타슘 통로가 난자의 막 전압 조절에 관여할 가능성을 제시한다.

생쥐 Preantral 난포의 체외배양: FSH의 종류와 농도 및 초자화 냉동보존의 영향 (In Vitro Culture of the Isolated Mouse Preantral Follicles: Effect of Different Types of FSH and Vitrification)

  • 이숙현;신창숙;정형민;고정재;차광렬;이경아
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제27권4호
    • /
    • pp.387-392
    • /
    • 2000
  • Objectives: 1) To compare the efficacy of urofollitropin (Follimon) to that of recombinant human FSH (rhFSH) on the growth and maturation of mouse early preantral follicles in vitro, and 2) effect of vitrification on the growth and maturation of preantral follicles and oocytes . Methods: Isolated early preantra1 follicles (100-130 ${\mu}m$ diameter) were cultured for 12 days in 20 ${\mu}l$ ${\alpha}$-MEM media drop under the mineral oil. Follimon or rhFSH was added to the culture medium at various concentrations (0, 10, 100, and 1000 mIU/ml). Results: With Follimon, the dose of 10 mIU/ml showed the best follicle survival, growth, and MIl rate of oocyte than the other concentrations. Whereas the optimal dose of rhFSH was 100 mIU/ml. Despite the different optimal doses, the efficacy of two different FSHs on the follicle growth and maturation was similar. Isolated mouse preantral follicles were cryopreserved by vitrification and cultured in vitro for 12 days with 100 mIU/ml rhFSH. Despite the decreased follicular survival rate after thawing, the follicular growth and maturation rate of its oocyte were comparable to those of the fresh follicle. Conclusion: Results from the present study revealed that 1) the optimal doses of Follimon and rhFSH for in-vitro culture of mouse follicles are different, and 2) the frozen-thawed follicles develop normally after vitrification.

  • PDF

Effect of Preantral Follicle Isolation Technique on In Vitro Follicular Development in Mice

  • Lim, Hyun-Joo;Kim, Dong-Hoon;Im, Gi-Sun;Park, Sung-Jai;Son, Jun-Kyu;Baek, Kwang-Soo;Kwon, Eung-Gi
    • 한국수정란이식학회지
    • /
    • 제26권4호
    • /
    • pp.223-227
    • /
    • 2011
  • The objective of this study was to compare of different isolation method of mouse preantral follicles, and to examine in vitro development of mouse preantral follicles isolated by different method. Preantral follicles were mechanically or enzymatically extracted from mouse ovaries. Mechanical isolation method used fine gauge needles and enzymatic method of isolating follicles used collagenase. The recovered preantral follicles were cultured for 10 days in alpha-minimal essential medium (${\alpha}$-MEM) + 5% FBS + Insulin-Transferrin-Selenium (ITS) + 100 mIU/ml FSH. The collected primary follicles by enzymatic treatment were higher than mechanical method. Others stage preantral follicle by mechanical isolation were higher than enzymatic method. After 10 days of culture, no statistical differences were shown in survival rates of preantral follicle among the 2 culture groups. The metaphase II rates of the oocytes were significantly higher (p<0.05) in mechanical method (17.8%) than in enzymatic method (5.1%). These results suggest that the isolation method of choice depends on the target stage preantral follicles and mechanical isolation is an optimal method of preantral folliclesin a culture of mouse preantral follicle.

난포액이 생쥐 및 인간수정란의 체외발생에 미치는 영향 (Effects of Follicular Fluid on Development of Mouse and Human Embryos In Vitro)

  • 윤혜균;윤산현;임진호;이훈택;정길생
    • 한국가축번식학회지
    • /
    • 제18권1호
    • /
    • pp.71-81
    • /
    • 1994
  • These experiments were carried out to investigate the effects of human follicular fluid (hFF) as a protein supplement on development of mammalian embryo as well as to find out ways toward effective use of hFF. The developmental rates of mouse embryos to the blastocyst and implantation stages were significantly higher in T6 +hFF than T6+hFCS. Classified hFF according to the maturity of contained oocytes (M-hFF and Im-hFF), and compared the rates of development of mouse embryo cultured in M-hFF or Im-hFF to culture medium T6. Total protein, albumin and estradiol concentrations were higher in M-hFF than Im-hFF (P<0.05). The developmental rates of mouse embryos to the blastocyst and hatching blastocyst stages cultured in Im-hFF were significantly lower than those in M-hFF and the basic medium. In accordance of the results of human IVF, hFF has been divided into 4 groups. The developmental rates of mouse embryos to the blastocyst stage in presense of hFF from pregnant patients, who have good grade embryos, were significantly higher than those in hFF from patients who have poor grade embryos or were not pregnant. In addition, the rates of development of human embryo were compared in presense of BSA, hFF or hFCS. The developmental rates of human embryos cultured in Ham's F10+hFF were significantly higher than those in the Ham's F10+BSA. These results suggests that the culture system using hFF could improve the development ability of mammalian embryos and the viability of blastocysts cultured in vitro.

  • PDF

Impact of vitamin D3 supplementation on the in vitro growth of mouse preantral follicles

  • Shim, Yoo Jin;Hong, Yeon Hee;Lee, Jaewang;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.347-351
    • /
    • 2021
  • Objective: We investigated the impact of vitamin D3 (VD3) supplementation during mouse preantral follicle culture in vitro and the mRNA expression of 25-hydroxylase (CYP2R1), 1-alpha-hydroxylase (CYP27B1), and vitamin D receptor (VDR) in mouse ovarian follicles at different stages. Methods: Preantral follicles were retrieved from 39 BDF1 mice (7-8 weeks old) and then cultured in vitro for 12 days under VD3 supplementation (0, 25, and 50 pg/mL). Follicular development and the final oocyte acquisition were assessed. Preantral follicles were retrieved from 15 other BDF1 mice (7-8 weeks old) and cultured without VD3 supplementation. Three stages of mouse ovarian follicles were obtained (preantral, antral, and ruptured follicles). Total RNA was extracted from the pooled cells (from 20 follicles at each stage), and then reverse transcriptase-polymerase chain reaction was performed to identify mRNA for CYP2R1, CYP27B1, and VDR. Results: The survival of preantral follicles, rates of antrum formation and ruptured follicles (per initiated follicle) and the number of total or mature oocytes were all comparable among the three groups. Both CYP2R1 and CYP27B1 were expressed in antral and ruptured follicles, but not in preantral follicles. VDR was expressed in all three follicular stages. Conclusion: VD3 supplementation in vitro (25 or 50 pg/mL) did not enhance mouse follicular development or final oocyte acquisition. Follicular stage-specific expression of CYP2R1, CYP27B1, and VDR was observed.

Effects of ${\beta}$-Mercaptoethanol on the Growth of Preantral Follicles and the Maturation of Intrafollicular Oocytes

  • Gong, Seung Pyo;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2009
  • This study was undertaken to evaluate how ${\beta}$-mercaptoethanol (bME), an exogenous antioxidant, interacts with preantral follicles cultured in vitro. Mouse primary or secondary follicles were cultured in glutathione (GSH)-free or GSH-containing medium supplemented with bME of various concentrations, and the growth of preantral follicles, the maturation of intrafollicular oocytes and preimplantation development after parthenogenesis were monitored. In experiment 1, 0, 25, 50 or 100 ${\mu}M$ bME was added to culture medium supplemented with 100 ${\mu}M$ GSH or not. When secondary follicles were cultured in GSH-free medium, no significant change in follicle growth was detected after bME addition. However, exposure to bME in the presence of GSH significantly inhibited both follicle growth and oocyte maturation. Such detrimental effect became prominent in primary follicles and bME strongly inhibited follicle growth in the absence of GSH. In conclusion, there are stage-dependent effects of bME on follicle growth and oocyte maturation, and selective use of antioxidants contributes to establishing an efficient follicle culture system.

Involvement of Nitric Oxide During In Vitro Fertilization and Early Embryonic Development in Mice

  • Kim, Bo-Hyun;Kim, Chang-Hong;Jung, Kyu-Young;Jeon, Byung-Hun;Ju, Eun-Jin;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.86-93
    • /
    • 2004
  • Nitric oxide (NO) has emerged as an important intracellular and intercellular messenger, controlling many physiological processes and participating in the fertilization process via the autocrine and paracrine mechanisms. This study investigated whether nitric oxide synthase (NOS) inhibitior (L-NAME) and L-arginine could regulate in vitro fertilization and early embryonic development in mice. Mouse epididymal spermatozoa, oocytes, and embryos were incubated in mediums of variable conditions with and without L-NAME or L-arginine (0.5, 1, 5 and 10mM). Fertilization rate and early embryonic development were significantly inhibited by treating sperms or oocytes with L-NAME (93.8% vs 66.3%,92.1% vs 60.3%), but not with L-arginine. In contrast, fertilization rate and early embryonic development were conspicuously reduced when L-NAME or L-arginine was added to the culture media for embryos. Early embryonic development was inhibited by microinjection of L-NAME into the fertilized embryosin a dose-dependent manner, but only by high concentrations of L-arginine. These results suggest that a moderate amount of NO production is essential for fertilization and early embryo development in mice.

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong;Kang, Dawon
    • 한국수정란이식학회지
    • /
    • 제29권2호
    • /
    • pp.133-139
    • /
    • 2014
  • $K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.

In vitro Development of Interspecies Somatic Cell Nuclear Transfer Embryos Derived from Murine Embryonic Fibroblasts and Bovine Oocytes

  • Yun, J.I.;Koo, B.S.;Yun, S.W.;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1665-1672
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a useful method to preserve endangered species and to study the reprogramming event of a nuclear donor cell by the oocyte. Although several studies of iSCNT using murine cells and bovine oocytes have been reported, the development of murine-bovine iSCNT embryos beyond the 8-cell stage has not been successful. In this paper, we examined the developmental potential of embryos reconstructed with a murine embryonic fibroblast as the nuclear donor and a bovine oocyte as the cytoplasm recipient. The reconstructed embryos were cultured in CZB (murine medium) or CR1aa (bovine medium). In addition, for the development of a murine-bovine iSCNT blastocyst, the antioxidant ${\beta}$-mercaptoethanol (${\beta}ME$) was supplemented to CR1aa medium. Furthermore, to verify the mouse genome activation in murine-bovine iSCNT embryos, RT-PCR analysis of murine Xist was performed. The development of the murine-bovine iSCNT embryos cultured in CR1aa was significantly higher than that in CZB (p<0.05). With respect to the effect of BME on the development of the murine-bovine iSCNT blastocyst, addition of BME produced a significant increase in blastocyst development (p<0.05). Karyotype analysis confirmed that the reconstructed embryos were derived from murine cells (40XX). The Xist gene was gradually increased from the 8-cell stage to the blastocyst stage. This is the first report of blastocyst development of iSCNT embryos derived from murine somatic cells and bovine oocytes. These results demonstrate that bovine cytoplasm can support the development of later stages of a preimplantation embryo from murine-bovine iSCNT.