• Title/Summary/Keyword: Mouse development

Search Result 1,595, Processing Time 0.031 seconds

Effects of Oriental medicine on Osteoporosis in Ovariectomized Rats

  • Kim, Young-Ock;An , Deuk-Kyun;Lee, Hyun-Sun;Lee, Young-Ah;Kim, Yang-On;Song, Chang-Woo;Kim, Yang-Eon;Song, Chang-Woo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.233.2-233.2
    • /
    • 2003
  • This experiment study was carried out to prove the efficacy of Cheongpajeon(CPJ) extract in ovariectomized rats. 40 rats were divided into 4 groups, administrated saline after sham operation group(sham-op), administered saline after ovariectomy group(control), administered CPJ 1g/kg after ovariectomy group and administered Livial 0.042mg/kg after ovariectomy group(positive control). We examined the water extract of CPJ that is capable of affecting osteoblast proliferation using MG-63 and HOS-TE85. (omitted)

  • PDF

Enu is a Powerful Mutagen for Development Mutant Mice -Sixty-Six Mutants From Enu Mutagenesis Program in Kit/Krict-

  • Seokjoo Yoon;Cho, Kyu-Hyuk;Cho, Jae-Woo;Lee, Phil-Soo;Kim, Yang-Eon;Cha, Dal-Sun;Park, Han-Jin;Kang, Min-Sung;Nam, Yoon-Yi
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.184-184
    • /
    • 2003
  • ENU(ethylnitrosourea) mutagenesis has been carrying out since 1999 in Korea Institute of Toxicology (KIT), Korea Research Institute Chemical of Technology (KRlCT). We have chosen BALB/c and C57BL/6 and screened for dominant and recessive mutants. Four hundred and twenty one males(GO) have been injected with ENU, 150, 200, 250 and 300 mg/kg body weight, twice, one week apart.(omitted)

  • PDF

Effect of Mature Human Follicular Fluid on the Development of Mouse Embryos in vitro (성숙난포액을 이용한 생쥐배아의 발달에 관한 연구)

  • Park, S.Y.;Lee, J.J.;Kim, S.H.;Ku, P.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.125-131
    • /
    • 1992
  • The possible effect of human follicular fluid(hFF) on the growth and development of fertilized oocytes and embryos is important because the fallopian tubes are exposed to FF after follicular rupture and the processes of fertilization and embryo cleavage occur inside the fallopian tubes. Previously, it was suggested that human FF might adversely affect on the development of early mouse embryos. In order to investigate the effect of hFF on the development of embryos, early mouse embryos were cultured in media containing various protein sources as bovine serum albumin(BSA), fetal cord serum(FCS) and FF. And we evaluated the development of early mouse embryos in terms of the morphology, cleavage rate, and cell count of blastcysts. There were no significant differences in the morula and blstocyst formation rates of 2-cell mouse embryos cultured in the media containg three different protein sources and three different concentrations of FF. The blastocyst formation rate of 1-cell mouse embryo cultured in FF group was significantly higher than that cultured in BSA group(P<0.05). The morula and blastocyst formation rates of 2-cell mouse embryos of the group cultured in the media containing FF were comparable with those of other two groups, in addition, the cell count of blastocysts of FF group in the 2-cell embryo culture was higher than those of BSA group and HCS group(P<0.01), and this finding was also noted in 1-cell embryo culture. There was no difference in the morula and blastocyst formation rates of the 2-cell mouse embryos cultured in the media containing different concentrations of FF. These results suggest that mature human follicular fluid has no inhibitory activity on the development of early mouse embryos even in high concentration and may be a good protein source which is positively associated with the development of mouse embryos in vitro especially in 1 cell embryo culture.

  • PDF

Genetically Engineered Mouse Models for Drug Development and Preclinical Trials

  • Lee, Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980's, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials.

Development of Mouse Preimplantation Embryos in Solubilized Matrigel Media (용해된 Matrigel 첨가 배지에서 착상전 생쥐 배아의 발생)

  • Chung, Byung-Mok;Choo, Hyung-Sik;Kang, Byung-Moon;Gye, Myung-Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.4
    • /
    • pp.381-385
    • /
    • 2000
  • Objective: To verify the effect of two forms (growth factor and growthfactor-reduced) of solubilized Matrigel on the development in mouse preimplantation embryos. Methods: Late 2-cell stage eggs were cultured through the blastocyst stage in the presence of GF- or GFR-Matrigel (0.5%, v/v). Morphological development, cell number and % apoptotic nuclei of blastocyst were measured by Roecst staining and TUNEL of nuclei. Results: Morphological development, number of cells per embryo was significantly increased in the presence of GF- or GFR-Matrigel. Culture of the embryos in the GF-Matrigel gave the best result. Conclusion: Low concentration of solubilized Matrigel improved development of mouse embryos regardless of growth factor content of the Matrigel. Growth factors and extracellular matrix protein included in the Matrigel synergistically potentiated the development of mouse embryos.

  • PDF

Effect of Co-Culture Mouse Fetal Fibroblast Cell on In Vitro Development of Blastomeres Separated from Mouse Preimplantation Embryos (생쥐 태아 Fibroblast 세포와 공동배양이 초기 생쥐배 분할구의 체외 발생능에 미치는 영향)

  • 김진호;정병헌;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.4
    • /
    • pp.341-346
    • /
    • 1993
  • The development of isolated blastomeres from mammalian preimplantation embryos has been basically studied for the multiplication of embryos from superior animals. Therefore, this study was investigated the effect of co-culture with mouse fetal fibroblast cells(MFFC) on in vitro development of blastomeres from mouse preimplantation embryos. Mature female ICR mice were treated with hormone to induce superovulation and embryos were collected at each 2, 4, and 8-cell stage. Then, after removing zona pellucida with protease, blastomeres were isolated by micropipetting, or reconstituted with different stage blastomere, and incubated for 72 hrs either in T6 or TCM199 or on the monolayer of MFFC, which was prepared with fibroblast cells from 14∼14 day mouse fetus. After incubation, we examined their development rates every day and the nuclei numbers of each blastocyst by Hoechst-33342 staining. In the development rates of blastomeres, there were no significant differences between media but the higher rateswere found in the monolayer of MFFC, regardless of reconsititution. In addition, blastomeres cultured with MFFC had slightly greater number of nuclei than those cultured in single media. Generally, the higher development rates of blastomeres were found from earlier stage embryos than the later ones, regardless of culture conditions. Reconsitituted blastomeres had more nuclei but did not show the higher development rates, compared to the single blastomeres. Taken together, our results suggest that co-culture with MFFC have a beneficial effect on the in vitro development of blastomeres from mouse embryos.

  • PDF

Mouse Bank at CARD Kumamoto University, Japan

  • Nakagata, Naomi
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.16.1-16.4
    • /
    • 2010
  • Cryopreservation of mouse embryos and spermatozoa has become the foremost technique for preserving large numbers of different strains of mice with induced mutations. In 1998, our mouse bank was established in the Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Japan, based on the Preservation, supply and development of genetically engineered animals report published by the Ministry of Education, Culture, Sports, Science and Technology. We cryopreserve mouse embryos and sperm, supply these resources, organize training courses to educate people and form part of a domestic and international network of both mutagenesis and resource centers. We currently have over 1,500 mouse strains, 842,000 frozen embryos and 26,000 straws containing frozen sperm. Moreover, we disclose information about 1,300 deposited strains. Furthermore, over 400 strains of frozen embryos or mice produced from frozen embryos and sperm are being supplied to the requesters both domestically and internationally. Additionally we hold training courses on the cryopreservation of mouse germplasm 2~3 times a year, both domestically and internationally. In the course, we teach basic reproductive engineering techniques to trainees on a man-to-man basis. We have already held 28 training courses on the cryopreservation of mouse germplasm at our center and at other institutes.

Effect of Epidermal Growth Factor(EGF) on Early Embryonic Development in Mouse (Epidermal Growth Factor(EGF)가 생쥐 초기배아의 발생에 미치는 영향)

  • Byun, Hye-Kyung;Lee, Ho-Joon;Kim, Sung-Rye;Kim, Hae-Kwon;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • Growth factors (GFs) produced by the embryo or by the maternal reproductive tract have been reported to regulate the embryonic development and differentiation. Among GFs, EGF as a mitogen plays a role in mitosis and functional differentiation of trophectoderm cells in mouse. The present study was carried out to investigate the effect of EGF on development of mouse embryos and to localize EGF in the mouse oocytes and embryos, which has been reported to be detected in the reproductive tract in mammals. To investigate the effect of EGF on the development of the embryo, mouse 2-cell embryos were cultured to blastocysts stage in Ham's F10 medium, treated with EGF(10-50 ng/ml) for 72 hrs. Immunocytochemistry was performed from oocyte to blastocyst stage with anti-EGF and anti-Mouse IgG, in order to determine the stage which EGF would be expressed in mouse. Exogenous EGF (more than 10 ng/ml) in the culture medium improved the developmental and hatching rates in the mouse embryos. As a result of immunocytochemistry, the embryonic EGF was expressed after the late 4-cell stage. EGF is thought to enhance preimplantation embryonic development and hatching. Exogenous EGF in the culture medium is thought to activate EGF receptor in the late 4-cell embryos and to enhance blastulation and hatching in mouse embryos. It is concluded that EGF enhances the developmental and hatching rates in the mouse embryos.

  • PDF