• Title/Summary/Keyword: Mouse, Implantation

Search Result 106, Processing Time 0.025 seconds

The Effect of Uterine Environment during Peri-implantation Period on the Ultrastructure of Zona Pellucida in Mouse Oocytes and Embryos (착상기간의 자궁내 환경이 생쥐 난자 및 배아의 투명대 미세구조에 미치는 영향)

  • Han, Sung-Won;Chung, Ho-Sam;Kang, Hee-Gyoo;Lee, Ho-Joon;Gye, Myung-Chan;Kim, Sung-Rye;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.345-353
    • /
    • 1999
  • In the studies on the hatching mechanisms in mammals, many investigators focused on the embryonic intrinsic factor(s) in in vitro culture, but the uterine environment as the extrinsic factor(s) is thought to play an important role in hatching mechanism. Therefore, to evaluate the effect of uterine environment on the hatching event in vivo, the immature(GV) and ovulated(MII) oocytes, and the late 2-cell embryos of mouse were transferred to pseudopregnant foster mother's uterus during peri-implantation period. So it was verified whether there would happen hatching by only uterine environment independently on embryonic stage. The ultrastructural changes of the zona surface of transferred group were compared with those 01 in vivo and vitro group by SEM. 36 hrs after transfer, the immature and ovulated oocytes almost degenerated, and the late 2-cell embryos developed to various embryonic stages. However, the embryos which didn't develop to blastula stage did not hatch. The ultrastructural network of ZP in transferred group seemed to be smoothed uniformly, which was different from in vitro group. In conclusion, it is suggested that the uterine environment during peri-implantation period enhances the embryo hatching by provoking the structural change of ZP.

  • PDF

Establishment of In Vitro 3-Dimensional Culture System of Mouse Endometrial Cells;I. Cytohistological Study on Mouse Endometrium (마우스 자궁내막 세포를 이용한 3차원적 배양시스템 확립에 관한 연구; I. 마우스 자궁내막에 관한 세포조직학적 연구)

  • Nam, Hwa-Kyung;Kim, Eun-Young;Lee, Keum-Sil;Park, Sae-Young;Park, Eun-Mi;Kwon, Jung-Kyun;Yoon, San-Hyun;Park, Se-Pil;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 2000
  • This study was designed to identify the ultrastructural changes of mouse endometrium during peri-implantation period and obtain the fundamental information for the establishment of 3-dimensional culture system of mouse endometrial cells in vitro. The used female ICR mice ($6{\sim}8$ wks) were conducted on pregnant. The biopsies were obtained from whole uterus at cycle day 1 (D1) and day 5 (D5) after hCG injection and mating. The biopsies materials were fixed 2.5% glutaraldehyde and 1% osmium tetroxide. Subsequently, for observation using light and transmission electron microscopy (LM and TEM), they were dehydrated and embedded in Epon and the embedded biopsies were sectioned and stained. For scanning electron microscopy (SEM), the fixed specimens were dehydrated, dried and coated with gold. 1) For LM, the biopsied materials at D5 (late secretory phase) were appeared the extended stromal layer by increased connective tissues and the fully developed endometrial glands and vessels compared with D1 (early secretory phase). 2) For TEM, the mouse endometrium was consisted of 3-layers, a simple polarized columnar epithelial cells, basement membrane and stromal cells. At D5, the distribution of microvilli, endoplasmic reticulum, Golgi body, lipid and glycogen deposits, secretory granules and surface area of basement membrane were increased. 3) For SEM, the degree of folding and microvilli of surface of mouse epithelial cells was became more and more according to the process of secretory phase, and at D5, implantation time of mouse, the appearance of pinopodes as a specific marker of uterine receptivity was found. The uterine pinopodes of mouse were found in narrow sites at the luminal surface, irregularity and appeared the different stages in the same sample. Therefore, these results indicated that the mouse endometrium was experienced dramatic morphological changes during peri-implantation period.

  • PDF

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.

Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

  • Shin, Hyejin;Choi, Soyoung;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • Objective: Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods: To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with $1-{\mu}M$ 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-$H_2DCFDA$). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results: We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion: During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.

Studies on Culture and Transfer of Mouse Embryos Biseeted at Various Cell Stages (생쥐배의 발생단계별 미세분할, 배양 및 이식 관한 연구)

  • 강대진;박희성;이효종;박충생
    • Journal of Embryo Transfer
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 1989
  • These experiments were carried out to determine the effect of cell stage in embryo bisection on the sub-Sequent in vitro and in vivo development in mouse. The embryos of ICR mouse were microsurgicaily bisected at 2-cell, 4-cell, 8-cell, morula and blastocyst stage using a microsurgical blade attached a micromanipulator. These demi-embryos without zona pellucida were cultured up to blastocyst stage and transferred to pseudopregnant mice, and the development of these demi-embryos was compared with the results of intact embryos of the corresponding cell stage. The successful rate of mouse embryo bisection at 4-cell stage (59.0%) was significantly (p <0.05) lower than those at 8-cell (75.6%), 2ce11 (80.7%) or morula stage (84.8%), and highest at blastocyst stage (95.7%). When the bisected embryos without any damage from microsurgery were cultured in vitro up to blastocyst,the in vitro de'velopment of demi-embroys bisected at morula to blastocyst was 91.6 to 95.3%, which was similar to the culture result of intact embryos of corresponding stage. However, the in vitro development of demi-em-bryos bisected at 2- to 8-cell stage was signiflcantiy (p <0.05) lower.The post-transfer implantation rate of demi-embryos developed in vitro to eu-blastocyst were 19.6 and 25.4% in demi-embryos bisected at morula and blastocyst stage,respectively and not significantly (P <0.05)different from the result of intact embryos of the same stage. However, the implantation rates of demi-embryos bisected at 2- or 8-cell stage were significantly (P <0.05) lower than the result from the intact embryos of the corresponding stage.

  • PDF

The Effect of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) on The Expression of IL-1 System mRNA in Mouse Embryos

  • Kim, D. H.;S. S. Ko;Lee, H. C.;Lee, H. H.;Kim, S. S.;Lee, H. J.;B. C. Yang;Park, S. B.;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.52-52
    • /
    • 2003
  • Granulocyte-macrophage colony stimulating factor (GM-CSF) is synthesized in the female reproductive tract and has been shown to play an important role in human and murine embryo development and implantation. However, the mechanism of GM-CSF on the embryo development is unknown. Recent studies suggested that GM-CSF may be increase the expression of implantation relented genes, such as interleukin-1 (IL-1) system. Our aim of this study was to compare the interleukin-1$\alpha$ (IL-1$\alpha$), interleukin-1$\beta$ (IL-1$\beta$) and interleukin-1 receptor antagonist (IL-lra) mRNA between the GM-CSF supplemented group and control group in mouse embryos. Mouse 2-cell embryos were cultured in P-1 medium supplemented with or without mouse GM-CSF (10 ng/ml). The number of total and apoptotic cell in blastocyst were assessed by TUNEL. And then, the expression of IL-1$\alpha$, IL-1$\beta$ and IL-1ra mRNA in blastocyst were examined by RT-PCR.

  • PDF

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.