• Title/Summary/Keyword: Motors and drives

Search Result 216, Processing Time 0.025 seconds

A Study on the International Standard and Regulation for Electric Motor and Drives (전동기와 드라이브의 국제 규격 및 규제에 관한 현황 연구)

  • Woo, Kyung-Il;Park, Han-Seok;Kim, Dea-Kyong;Choi, Han-Seok;Jun, Hee-Deuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.437-443
    • /
    • 2014
  • Electric motors and drives consume the largest amount of electricity more than 40% of global electricity consumption. In addition, motors, drives and its components are included in the global high-trade products and the main driving source for industrial equipment and house appliances. Thus, International standards and regulations for their safety and efficiency are internationally being discussed and created for the protection of its citizens and energy saving. So, understanding the international standards and the regulation of each country is essential to enhance overseas market and to develop product. In this paper, on the basis of this background, status and trends of international standards and regulations are introduced for safety and efficiency of motors and the drives. Safety and efficiency of the IEC (International Electrotechical Commission) standards are introduced in the emphasis. Also, regulations are studied about the differences and trends in each county.

State of the Art on Permanent Magnet Brushless DC Motor Drives

  • Singh, Bhim;Singh, Sanjeev
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • Permanent magnet brushless DC (PMBLDC) motors are the latest choice of researchers due to their high efficiency, silent operation, compact size, high reliability and low maintenance requirements. These motors are preferred for numerous applications; however, most of them require sensorless control of these motors. The operation of PMBLDC motors requires rotor-position sensing for controlling the winding currents. The sensorless control would need estimation of rotor position from the voltage and current signals, which are easily sensed. This paper presents state of the art PMBLDC motor drives with an emphasis on sensorless control of these motors.

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

Parallel Operation Characteristics of Two Linear Induction Motors (선형 유도전동기의 병렬 운전 특성 실험)

  • Park Seung-Chan;Kim Kyung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.44-48
    • /
    • 2005
  • In general, the parallel-connected linear induction motors(LIM) are fed by one VVVF inverter in the magnetically levitated vehicle(MAGLEV) or linear motor subway drives. The air gap length of the parallel-connected linear induction motors operating at a grade or curved sections can be different each other. The air gap difference of the two motors attached to the same module causes unequal phase currents, asymmetic thrust and attraction force generation. In this paper, parellel-connected linear induction motors are operated by one IGBT inverter under the different air gap condition so that the phase current characteristics are examined experimentally.

  • PDF

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

CORRECTION OF SWITCHING DEAD TIMES IN PWM INVERTER DRIVES

  • Lee, Kun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.287-290
    • /
    • 1990
  • The paper describes the correction of the switching dead times avoiding a bridge leg short circuit in pulse width modulated voltage sorce inverters. The co consequences on AC variable speed drives with synchronous and asynchronous motors are described by harmonic analysis and by computer simulation.

  • PDF

A Digital Controller of Stepping Motors for High Speed Driving (고속운전을 위한 스테핑 모터 디지털 제어기)

  • Lee, Chi-Hwan;Lee, Myung-Jun;Lee, Seung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.45-47
    • /
    • 2005
  • A digital controller of stepping motors is designed for removing mid-range resonance. Rotor oscillation is detected from motor currents and the microprocessor generates frequency modulation taking into account rotor oscillation. ATmega16 is employed and the controller drives stepping motors up to 3000[rpm] at micro stepping.

  • PDF

Design of current estimator for reducing of current ripple in BLDC motor (BLDC 전동기의 전류맥동 보상을 위한 전류추정기 설계)

  • Kim, Myung-Dong;Oh, Tae-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.339-341
    • /
    • 2006
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor current it is modeled by a neural network that is configured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which fast inputs and outputs are used to calculate the current output. Using the model, effective estimator to compensate the effects of disturbance has been designed. The effectiveness of the proposed current estimator is verified through experiments.

  • PDF

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.